Fundamental absorption edge in CuIn5Se8 and CuGa3Se5 single crystals
暂无分享,去创建一个
N. Syrbu | M. León | S. Levcenko | E. Arushanov | A. Nateprov | V. Tezlevan | J. Merino
[1] G. Teeter,et al. Properties of high-efficiency CuInGaSe2 thin film solar cells , 2005 .
[2] C. Rincón,et al. Crystal growth, structural, and optical characterization of the ordered defect compound CuGa5Se8 , 2004 .
[3] A. Jäger-Waldau,et al. Temperature dependence of the exciton gap in monocrystalline CuGaSe2 , 2003 .
[4] C. Rincón,et al. Temperature dependence of the optical energy band gap in CuIn3Se5 and CuGa3Se5 , 2003 .
[5] C. Rincón,et al. Temperature dependence of the optical energy gap and Urbach’s energy of CuIn5Se8 , 2001 .
[6] C. Rincón,et al. Urbach's tail in the absorption spectra of the ordered vacancy compound CuGa3Se5 , 2000 .
[7] J. Galibert,et al. Raman spectra of the ordered vacancy compounds CuIn3Se5 and CuGa3Se5 , 1998 .
[8] R. Pässler. Basic Model Relations for Temperature Dependencies of Fundamental Energy Gaps in Semiconductors , 1997 .
[9] Kevin P. Homewood,et al. Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2 , 1995 .
[10] A. Rockett,et al. Structural, optical, and electrical properties of epitaxial chalcopyrite CuIn3Se5 films , 1994 .
[11] D. Schmid,et al. Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2 , 1993 .
[12] K. O'Donnell,et al. Temperature dependence of semiconductor band gaps , 1991 .