Merging for time inhomogeneous finite Markov chains, Part I: singular values and stability

We develop singular value techniques in the context of time inhomogeneous finite Markov chains with the goal of obtaining quantitative results concerning the asymptotic behavior of such chains. We introduce the notion of c-stability which can be viewed as a generalization of the case when a time inhomogeneous chain admits an invariant measure. We describe a number of examples where these techniques yield quantitative results concerning the merging of the distributions of the time inhomogeneous chain started at two arbitrary points.

[1]  M. S. Bartlett,et al.  The ergodic properties of non-homogeneous finite Markov chains , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  J. Ringrose Compact non-self-adjoint operators , 1971 .

[3]  E. Seneta On strong ergodicity of inhomogeneous products of finite stochastic matrices , 1973 .

[4]  Joel E. Cohen,et al.  Ergodicity of age structure in populations with Markovian vital rates, III: Finite-state moments and growth rate; an illustration , 1977, Advances in Applied Probability.

[5]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[6]  D. Cooke,et al.  Finite Markov Processes and Their Applications , 1981 .

[7]  D. Aldous Random walks on finite groups and rapidly mixing markov chains , 1983 .

[8]  P. Diaconis Group representations in probability and statistics , 1988 .

[9]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[10]  J. A. Fill Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .

[11]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[12]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[13]  P. Diaconis,et al.  Nash inequalities for finite Markov chains , 1996 .

[14]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[15]  Persi Diaconis,et al.  What Do We Know about the Metropolis Algorithm? , 1998, J. Comput. Syst. Sci..

[16]  Y. Peres,et al.  Evolving sets, mixing and heat kernel bounds , 2003, math/0305349.

[17]  P. Moral,et al.  On contraction properties of Markov kernels , 2003 .

[18]  Laurent Saloff-Coste,et al.  Random Walks on Finite Groups , 2004 .

[19]  R. Douc,et al.  Quantitative bounds on convergence of time-inhomogeneous Markov chains , 2004, math/0503532.

[20]  Yuval Peres,et al.  Shuffling by Semi-random Transpositions , 2004 .

[21]  L. Saloff-Coste,et al.  Convergence of some time inhomogeneous Markov chains via spectral techniques , 2007 .

[22]  L. Saloff-Coste,et al.  Refined estimates for some basic random walks on the symmetric and alternating groups , 2008, 0809.0688.

[23]  L. Saloff-Coste,et al.  Time inhomogeneous Markov chains with wave-like behavior. , 2010, 1011.1799.

[24]  L. Saloff-Coste,et al.  Merging for inhomogeneous finite Markov chains, part II: Nash and log-Sobolev inequalities , 2011, 1104.1560.