Experimental quantum conference key agreement

Future quantum networks will enable long-distance quantum key distribution (QKD) by providing on-demand entanglement to arbitrary combinations of users.Paradigmatic QKD protocols establish secure keys between pairs of users, however when more than two parties want to communicate, recently introduced quantum conference quantum key agreement (CKA) protocols can drastically outperform 2-party primitives in terms of resource cost. Here we implement a four-user quantum CKA protocol using polarisation-encoded Greenberger-Horne-Zeilinger (GHZ) entangled states generated by high-brightness, telecom photon-pair sources. We distribute these states over fibre connections of up to 50 km length and implement custom multi-party error correction and privacy amplification on the resulting raw keys. From a finite-key analysis, we establish an information-theoretic secure key of up to $1.15\times10^6$ bits, which is used to encrypt and securely share an image between the four users. Surpassing the previous maximum distance for GHZ state transmission by more than an order of magnitude, these results demonstrate the viability of network protocols relying on multi-partite entanglement. Future applications beyond quantum CKA include entanglement-assisted remote clock-synchronization, quantum secret sharing, and GHZ-based repeater protocols.

[1]  Christoph Pacher,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[2]  Matej Pivoluska,et al.  Layered quantum key distribution , 2017, 1709.00377.

[3]  Rafael Chaves,et al.  Enhanced Multiqubit Phase Estimation in Noisy Environments by Local Encoding. , 2019, Physical review letters.

[4]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[5]  Francesco Graffitti,et al.  Design considerations for high-purity heralded single-photon sources , 2018, Physical Review A.

[6]  David Elkouss,et al.  Efficient reconciliation protocol for discrete-variable quantum key distribution , 2009, 2009 IEEE International Symposium on Information Theory.

[7]  V. V. Kuzmin,et al.  Scalable repeater architectures for multi-party states , 2019, npj Quantum Information.

[8]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[9]  Reply to “Comment on ‘Fully device-independent conference key agreement' ” , 2019, Physical Review A.

[10]  Hermann Kampermann,et al.  Finite-key effects in multipartite quantum key distribution protocols , 2018, New Journal of Physics.

[11]  Yao Fu,et al.  Long-distance measurement-device-independent multiparty quantum communication. , 2014, Physical review letters.

[12]  Serge Fehr,et al.  Sampling in a Quantum Population, and Applications , 2009, CRYPTO.

[13]  M P Almeida,et al.  Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing. , 2011, Optics express.

[14]  Stefano Pirandola,et al.  End-to-end capacities of a quantum communication network , 2019, Communications Physics.

[15]  Comment on “Fully device-independent conference key agreement” , 2019, Physical Review A.

[16]  Michael Epping,et al.  Multi-partite entanglement can speed up quantum key distribution in networks , 2016, 1612.05585.

[17]  Thomas Jennewein,et al.  A wavelength-tunable fiber-coupled source of narrowband entangled photons. , 2007, Optics express.

[18]  T. Jennewein,et al.  Experimental three-photon quantum nonlocality under strict locality conditions , 2013, Nature Photonics.

[19]  J. Eisert,et al.  Quantum network routing and local complementation , 2018, npj Quantum Information.

[20]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[21]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[22]  Yonggi Jo,et al.  Semi-device-independent multiparty quantum key distribution in the asymptotic limit , 2019, OSA Continuum.

[23]  Rupert Ursin,et al.  An entanglement-based wavelength-multiplexed quantum communication network , 2018, Nature.

[24]  Holger F. Hofmann,et al.  Clock synchronization using maximal multipartite entanglement , 2012, 1203.4300.

[25]  Michael Epping,et al.  Large-scale quantum networks based on graphs , 2015, 1504.06599.

[26]  Masahito Hayashi,et al.  Exponential Decreasing Rate of Leaked Information in Universal Random Privacy Amplification , 2009, IEEE Transactions on Information Theory.

[27]  Hoi-Kwong Lo,et al.  Conference key agreement and quantum sharing of classical secrets with noisy GHZ states , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[28]  S. Wehner,et al.  Fully device-independent conference key agreement , 2017, 1708.00798.

[29]  Michael Epping,et al.  Robust entanglement distribution via quantum network coding , 2016 .

[30]  J. F. Dynes,et al.  Cambridge quantum network , 2019, npj Quantum Information.

[31]  W. Dur,et al.  Modular architectures for quantum networks , 2017, 1711.02606.

[32]  Alberto Morello,et al.  DVB-S2: The Second Generation Standard for Satellite Broad-Band Services , 2006, Proceedings of the IEEE.