Chaos anticontrol and synchronization of three time scales brushless DC motor system

Abstract Chaos anticontrol of three time scale brushless dc motors and chaos synchronization of different order systems are studied. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can be observed. By adding constant term, periodic square wave, the periodic triangle wave, the periodic sawtooth wave, and kx|x| term, to achieve anticontrol of chaotic or periodic systems, it is found that more chaotic phenomena of the system can be observed. Then, by coupled terms and linearization of error dynamics, we obtain the partial synchronization of two different order systems, i.e. brushless DC motor system and rate gyroscope system.

[1]  Hongtao Lu,et al.  Chaotic Phase Shift Keying in Delayed Chaotic Anticontrol Systems , 2002, Int. J. Bifurc. Chaos.

[2]  Guanrong Chen,et al.  Chaotifying a stable LTI system by tiny feedback control , 2000 .

[3]  Vladimir E. Bondarenko,et al.  Control and `anticontrol' of chaos in an analog neural network with time delay , 2002 .

[4]  Jiye Zhang,et al.  Synchronizing chaotic systems using backstepping design , 2003 .

[5]  Xiaofan Wang,et al.  Generating chaos in Chua's circuit via time-delay feedback , 2001 .

[6]  Jinhu Lu,et al.  Synchronization of an uncertain unified chaotic system via adaptive control , 2002 .

[7]  N. Hemati Dynamic analysis of brushless motors based on compact representations of the equations of motion , 1993, Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting.

[8]  S. Codreanu Synchronization of spatiotemporal nonlinear dynamical systems by an active control , 2003 .

[9]  S. Ge,et al.  Adaptive synchronization of uncertain chaotic systems via backstepping design , 2001 .

[10]  Guanrong Chen,et al.  Generating topologically conjugate chaotic systems via feedback control , 2003 .

[11]  Guanrong Chen,et al.  Generating Chaos via , 2001 .

[12]  Jun-Guo Lu,et al.  Linear generalized synchronization of continuous-time chaotic systems , 2003 .

[13]  Guanrong Chen,et al.  Anticontrol of chaos via feedback , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[14]  Zhengzhi Han,et al.  Controlling and synchronizing chaotic Genesio system via nonlinear feedback control , 2003 .

[15]  Guanrong Chen,et al.  Anticontrol of chaos for discrete TS fuzzy systems , 2002 .

[16]  R. Femat,et al.  Synchronization of chaotic systems with different order. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Guanrong Chen,et al.  Chaotification via arbitrarily Small Feedback Controls: Theory, Method, and Applications , 2000, Int. J. Bifurc. Chaos.

[18]  R. Massey From chaos to order? , 1986, Connecticut medicine.

[19]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[20]  Jiong Ruan,et al.  Synchronization of chaotic systems by linear feedback controller , 1998 .

[21]  Young Hoon Joo,et al.  Chaotifying continuous-time TS fuzzy systems via discretization , 2001 .

[22]  N. Hemati Strange attractors in brushless DC motors , 1994 .

[23]  H. N. Agiza,et al.  Synchronization and adaptive synchronization of nuclear spin generator system , 2001 .

[24]  Kim-Fung Man,et al.  Generating Chaos via a Dynamical Controller , 2001, Int. J. Bifurc. Chaos.

[25]  Guanrong Chen Control and anticontrol of chaos , 1997, 1997 1st International Conference, Control of Oscillations and Chaos Proceedings (Cat. No.97TH8329).

[26]  George M. Zaslavsky Chaos in Dynamic Systems , 1985 .

[27]  Kim-Fung Man,et al.  Chaotifing a continuous-time system by time-delay feedback , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[28]  Jiong Ruan,et al.  Synchronization of chaotic systems by feedback , 1999 .

[29]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[30]  Jiong Ruan,et al.  An improved method in synchronization of chaotic svstems , 1998 .

[31]  Hsien-Keng Chen,et al.  Anti-control of chaos in rigid body motion , 2004 .

[32]  Guanrong Chen,et al.  Using Dynamic Neural Networks to Generate Chaos: an Inverse Optimal Control Approach , 2001, Int. J. Bifurc. Chaos.

[33]  BIFURCATIONS AND CHAOTIC MOTIONS IN A RATE GYRO WITH A SINUSOIDAL VELOCITY ABOUT THE SPIN AXIS , 1997 .

[34]  X. Shan,et al.  A linear feedback synchronization theorem for a class of chaotic systems , 2002 .

[35]  S. Codreanu Desynchronization and chaotification of nonlinear dynamical systems , 2002 .

[36]  Yinping Zhang,et al.  Some simple global synchronization criterions for coupled time-varying chaotic systems , 2004 .