Functional and genetic analysis of the colon cancer network

Cancer is a complex disease that has proven to be difficult to understand on the single-gene level. For this reason a functional elucidation needs to take interactions among genes on a systems-level into account. In this study, we infer a colon cancer network from a large-scale gene expression data set by using the method BC3Net. We provide a structural and a functional analysis of this network and also connect its molecular interaction structure with the chromosomal locations of the genes enabling the definition of cis- and trans-interactions. Furthermore, we investigate the interaction of genes that can be found in close neighborhoods on the chromosomes to gain insight into regulatory mechanisms. To our knowledge this is the first study analyzing the genome-scale colon cancer network.

[1]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[2]  Frank Emmert-Streib,et al.  Inferring the conservative causal core of gene regulatory networks , 2010, BMC Systems Biology.

[3]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[4]  F. Baas,et al.  The Human Transcriptome Map: Clustering of Highly Expressed Genes in Chromosomal Domains , 2001, Science.

[5]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[6]  Vasile Palade,et al.  Dense Structural Expectation maximisation with Parallelisation for Efficient Large-Network Structural Inference , 2013, Int. J. Artif. Intell. Tools.

[7]  Menghong Sun,et al.  Chromosomal Alteration in Chinese Sporadic Colorectal Carcinomas Detected by Comparative Genomic Hybridization , 2007, Diagnostic molecular pathology : the American journal of surgical pathology, part B.

[8]  M. Rao,et al.  Active Remodeling of Cortical Actin Regulates Spatiotemporal Organization of Cell Surface Molecules , 2012, Cell.

[9]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[10]  Carsten Wiuf,et al.  Frequent occurrence of uniparental disomy in colorectal cancer. , 2007, Carcinogenesis.

[11]  Jan H. Vogel,et al.  Chromosomal clustering of a human transcriptome reveals regulatory background , 2005, BMC Bioinformatics.

[12]  Tetsu Akiyama,et al.  Identification of a link between the tumour suppressor APC and the kinesin superfamily , 2002, Nature Cell Biology.

[13]  M. Duffy,et al.  Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? , 2001, Clinical chemistry.

[14]  Ronald W. Davis,et al.  A genome-wide transcriptional analysis of the mitotic cell cycle. , 1998, Molecular cell.

[15]  R. Holcombe,et al.  Wnt signaling and colon carcinogenesis: Beyond APC , 2011, Journal of carcinogenesis.

[16]  J. Herman,et al.  Colorectal cancer epigenetics: complex simplicity. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  B. Snel,et al.  The yeast coexpression network has a small‐world, scale‐free architecture and can be explained by a simple model , 2004, EMBO reports.

[18]  Oliver Sieber,et al.  A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21 , 2007, Nature Genetics.

[19]  C. Pál,et al.  The evolutionary dynamics of eukaryotic gene order , 2004, Nature Reviews Genetics.

[20]  Stefan Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[21]  Giacomo Cavalli,et al.  Chromosome kissing. , 2007, Current opinion in genetics & development.

[22]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[23]  M. Pino,et al.  The chromosomal instability pathway in colon cancer. , 2010, Gastroenterology.

[24]  Matthias Dehmer,et al.  B-cell lymphoma gene regulatory networks: biological consistency among inference methods , 2013, Front. Genet..

[25]  Steven Gallinger,et al.  Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24 , 2007, Nature Genetics.

[26]  BMC Bioinformatics , 2005 .

[27]  Matthias Dehmer,et al.  Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information , 2013, BMC Genomics.

[28]  Eytan Domany,et al.  Relationship of gene expression and chromosomal abnormalities in colorectal cancer. , 2006, Cancer research.

[29]  Matthias Dehmer,et al.  Structural Measures for Network Biology Using QuACN , 2011, BMC Bioinformatics.

[30]  S. Dudoit,et al.  Multiple Testing Procedures with Applications to Genomics , 2007 .

[31]  Sergey N. Dorogovtsev,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW (Physics) , 2003 .

[32]  Yoshiji Yamada,et al.  The nucleolar SUMO-specific protease SMT3IP1/SENP3 attenuates Mdm2-mediated p53 ubiquitination and degradation. , 2011, Biochemical and biophysical research communications.

[33]  A. Pombo,et al.  Intermingling of Chromosome Territories in Interphase Suggests Role in Translocations and Transcription-Dependent Associations , 2006, PLoS biology.

[34]  Andrei Yakovlev,et al.  Chromosome-specific spatial periodicities in gene expression revealed by spectral analysis. , 2009, Journal of theoretical biology.

[35]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[36]  P. Fraser,et al.  Nuclear organization of the genome and the potential for gene regulation , 2007, Nature.

[37]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[38]  Matthias Dehmer,et al.  The gene regulatory network for breast cancer: integrated regulatory landscape of cancer hallmarks , 2014, Front. Genet..

[39]  Homin K. Lee,et al.  Coexpression analysis of human genes across many microarray data sets. , 2004, Genome research.

[40]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[41]  Alfonso Bellacosa,et al.  Genetic hits and mutation rate in colorectal tumorigenesis: Versatility of Knudson's theory and implications for cancer prevention , 2003, Genes, chromosomes & cancer.

[42]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[43]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[44]  Frank Emmert-Streib,et al.  Influence of Statistical Estimators of Mutual Information and Data Heterogeneity on the Inference of Gene Regulatory Networks , 2011, PloS one.

[45]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[46]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[47]  R. Spielman,et al.  Polymorphic Cis- and Trans-Regulation of Human Gene Expression , 2010, PLoS biology.

[48]  Juliet A. Ellis,et al.  The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. , 2001, Human molecular genetics.

[49]  C. Mathers,et al.  Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 , 2010, International journal of cancer.

[50]  D. Busam,et al.  SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. , 2013, Cancer research.

[51]  Sabine Tejpar,et al.  Prognostic and Predictive Biomarkers in Resected Colon Cancer: Current Status and Future Perspectives for Integrating Genomics into Biomarker Discovery , 2010, The oncologist.

[52]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[53]  K. H. Wolfe,et al.  Clusters of co-expressed genes in mammalian genomes are conserved by natural selection. , 2005, Molecular biology and evolution.

[54]  Keith Wilson,et al.  Silence of chromosomal amplifications in colon cancer. , 2002, Cancer research.

[55]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[56]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[57]  Gianluca Bontempi,et al.  minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information , 2008, BMC Bioinformatics.

[58]  Olivier Pertz,et al.  Spatio-temporal Rho GTPase signaling – where are we now? , 2010, Journal of Cell Science.

[59]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[60]  Frank Emmert-Streib,et al.  Bagging Statistical Network Inference from Large-Scale Gene Expression Data , 2012, PloS one.

[61]  Heinz Becker,et al.  Gain of chromosome 8q23-24 is a predictive marker for lymph node positivity in colorectal cancer. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[62]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[63]  Galina V. Glazko,et al.  Statistical Inference and Reverse Engineering of Gene Regulatory Networks from Observational Expression Data , 2012, Front. Gene..

[64]  Matthias Dehmer,et al.  An efficient heuristic approach to detecting graph isomorphism based on combinations of highly discriminating invariants , 2013, Adv. Comput. Math..

[65]  G. Altay,et al.  Structural influence of gene networks on their inference: analysis of C3NET. , 2011 .