Stereoscopic three-dimensional visualization applied to multimodal brain images: clinical applications and a functional connectivity atlas

Effective visualization is central to the exploration and comprehension of brain imaging data. While MRI data are acquired in three-dimensional space, the methods for visualizing such data have rarely taken advantage of three-dimensional stereoscopic technologies. We present here results of stereoscopic visualization of clinical data, as well as an atlas of whole-brain functional connectivity. In comparison with traditional 3D rendering techniques, we demonstrate the utility of stereoscopic visualizations to provide an intuitive description of the exact location and the relative sizes of various brain landmarks, structures and lesions. In the case of resting state fMRI, stereoscopic 3D visualization facilitated comprehension of the anatomical position of complex large-scale functional connectivity patterns. Overall, stereoscopic visualization improves the intuitive visual comprehension of image contents, and brings increased dimensionality to visualization of traditional MRI data, as well as patterns of functional connectivity.

[1]  R Cameron Craddock,et al.  A whole brain fMRI atlas generated via spatially constrained spectral clustering , 2012, Human brain mapping.

[2]  Michael S. Duffy Stereoscopic Cinema and the Origins of 3-D Film: 1838–1952 (review) , 2010 .

[3]  Bharat B. Biswal,et al.  Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity , 2010, NeuroImage.

[4]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[5]  Peter A. Calabresi,et al.  A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions , 2010, NeuroImage.

[6]  Mark W. Woolrich,et al.  Bayesian analysis of neuroimaging data in FSL , 2009, NeuroImage.

[7]  Karl J. Friston,et al.  CHAPTER 5 – Non-linear Registration , 2007 .

[8]  David Sir Brewster,et al.  The Stereoscope; Its History, Theory, and Construction, with Its Application to the Fine and Useful Arts and to Education , 2007 .

[9]  William E. Lorensen,et al.  The NA-MIC Kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[10]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[12]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[13]  David F. McAllister,et al.  Stereo and 3‐D Display Technologies , 2002 .

[14]  G. Ribas,et al.  Anaglyphic three-dimensional stereoscopic printing: revival of an old method for anatomical and surgical teaching and reporting. , 2001, Journal of neurosurgery.

[15]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[16]  Matthew J. McAuliffe,et al.  Medical Image Processing, Analysis and Visualization in clinical research , 2001, Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001.

[17]  R. Barker,et al.  Neuroanatomy: 3D-Stereoscopic Atlas of the Human Brain , 2000, Journal of Neurology.

[18]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  W. Eric L. Grimson,et al.  An Integrated Visualization System for Surgical Planning and Guidance Using Image Fusion and Interventional Imaging , 1999, MICCAI.

[20]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[21]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[22]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[23]  Douglas G. Altman,et al.  Practical statistics for medical research , 1990 .

[24]  Joel Pokorny,et al.  Eye disease and color defects , 1986, Vision Research.

[25]  R. F. Hellbaum,et al.  LC shutter glasses provide 3-D display for simulated flight , 1986 .

[26]  Lenny Lipton,et al.  Foundations of the stereoscopic cinema : a study in depth , 1984 .

[27]  N. Phillips,et al.  An advance in the processing of holograms , 1976 .

[28]  M. Morgan,et al.  Apparent Motion and the Pulfrich Effect , 1975, Perception.

[29]  C. WILLIAM TYLER,et al.  Depth perception in disparity gratings , 1974, Nature.

[30]  Tian Huang Digital holography , 1971 .

[31]  Eric G. Rawson,et al.  Vibrating varifocal mirrors for 3-D imaging , 1969 .

[32]  A. C. Traub Stereoscopic display using rapid varifocal mirror oscillations. , 1967, Applied optics.

[33]  B JULESZ,et al.  Binocular Depth Perception without Familiarity Cues , 1964, Science.

[34]  C. Wheatstone XVIII. Contributions to the physiology of vision. —Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision , 1962, Philosophical Transactions of the Royal Society of London.

[35]  B. Julesz Binocular depth perception of computer-generated patterns , 1960 .

[36]  Reuel A. Sherman,et al.  Benefits to Vision through Stereoscopic Films , 1953 .

[37]  D. Gabor A New Microscopic Principle , 1948, Nature.

[38]  Jeffrey R. Binder,et al.  fMRI of Language Systems: Methods and Applications , 2011 .

[39]  M. Jenkinson Non-linear registration aka Spatial normalisation , 2007 .

[40]  C. Pulfrich Die Stereoskopie im Dienste der isochromen und heterochromen Photometrie , 2005, Naturwissenschaften.

[41]  R. Kikinis,et al.  3D Slicer , 2004, ISBI.

[42]  David F. McAllister,et al.  Display Technology : Stereo & 3 D Display Technologies , 2003 .

[43]  Thomas S. Huang,et al.  Digital Holography , 2003 .

[44]  Rhys Hawkins,et al.  Digital Stereo Video: display, compression and transmission , 2002 .

[45]  Carl Machover,et al.  Virtual reality , 1994, IEEE Computer Graphics and Applications.

[46]  Howard Rheingold,et al.  Virtual Reality , 1991 .

[47]  W. Rollmann Notiz zur Stereoskopie , 1853 .

[48]  C. Wheatstone Beiträge zur Physiologie des Gesichtssinnes , 1842 .