Generalized Navier Boundary Condition for the Moving Contact Line

From molecular dynamics simulations on immiscible flows, we find the relative slipping between the fluids and the solid wall everywhere to follow the generalized Navier boundary condition, in which the amount of slipping is proportional to the sum of tangential viscous stress and the uncompensated Young stress. The latter arises from the deviation of the fluid-fluid interface from its static configuration. We give a continuum formulation of the immiscible flow hydrodynamics, comprising the generalized Navier boundary condition, the Navier-Stokes equation, and the Cahn- Hilliard interfacial free energy. Our hydrodynamic model yields near-complete slip of the contact line, with interfacial and velocity profiles matching quantitatively with those from the molecular dynamics simulations.

[1]  Hans Johnston,et al.  Finite Difference Schemes for Incompressible Flow Based on Local Pressure Boundary Conditions , 2002 .

[2]  Chen,et al.  Interface and contact line motion in a two phase fluid under shear flow , 2000, Physical review letters.

[3]  Mark O. Robbins,et al.  Microscopic studies of static and dynamic contact angles , 1993 .

[4]  P. G. de Gennes,et al.  A model for contact angle hysteresis , 1984 .

[5]  Banavar,et al.  Molecular dynamics of Poiseuille flow and moving contact lines. , 1988, Physical review letters.

[6]  Ø Ù ¡ Ö Μ ´ ¡ Ö Μù ½ Êê ¡ · Ö ¢ ´½ººµ Ûûûöö Ö ¢ Ù ´½,et al.  Numerical Methods for Viscous Incompressible Flows: Some Recent Advances , 2000 .

[7]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[8]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[9]  R. G. Cox The dynamics of the spreading of liquids on a solid surface. Part 2. Surfactants , 1986, Journal of Fluid Mechanics.

[10]  P. Gennes Wetting: statics and dynamics , 1985 .

[11]  Weiqing Ren,et al.  An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions , 2000 .

[12]  Robbins,et al.  Simulations of contact-line motion: Slip and the dynamic contact angle. , 1989, Physical review letters.

[13]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[14]  Zhou,et al.  Dynamics of immiscible-fluid displacement in a capillary tube. , 1990, Physical Review Letters.

[15]  E. B. Dussan,et al.  LIQUIDS ON SOLID SURFACES: STATIC AND DYNAMIC CONTACT LINES , 1979 .

[16]  R. G. Cox The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow , 1986, Journal of Fluid Mechanics.

[17]  S. Troian,et al.  A general boundary condition for liquid flow at solid surfaces , 1997, Nature.

[18]  Joel Koplik,et al.  Molecular dynamics of fluid flow at solid surfaces , 1989 .

[19]  David Jacqmin,et al.  Contact-line dynamics of a diffuse fluid interface , 2000, Journal of Fluid Mechanics.

[20]  Chun Huh,et al.  The steady movement of a liquid meniscus in a capillary tube , 1977, Journal of Fluid Mechanics.