Quintom Potential from Quantum Anisotropic Cosmological Models Quintom Potential from Quantum Anisotropic Cosmological Models

plane (ω is the equation of state parameter of the dark energy) [4–12, 14–19, 21–25]). In the present study we desire to perform our investigation in the case of quintom cosmology, constructed using both quintessence (σ) and phantom (φ) fields, mantaining a nonspecific potential form V(φ, σ). There are many works in the literature that deals with this type of problems, but in a general way, and not with a particular ansatz, one that considers dynamical systems [12, 13, 20]. One special class of potentials used to study this behaviour corresponds to the case of the exponential potentials [4, 6, 9, 26, 28] for each field, where the corresponding energy density of a scalar field has the range of scaling behaviors [29, 30], i.e, it scales exactly as a power of the scale factor like, ρφ ∝ a , when the dominant component has an energy density which scales in a similar way. There are other works where other type of potentials are analyzed [1, 9, 15, 19, 20, 23, 24, 31].

[1]  J. Socorro,et al.  Quintom Potential from Quantum Anisotropic Cosmological Models , 2012 .

[2]  A. Shahabi,et al.  Dynamical stability in scalar-tensor cosmology , 2011, 1111.1305.

[3]  J. Socorro,et al.  Cosmological Bianchi Class A Models in Sáez-Ballester Theory , 2011, 1111.2318.

[4]  A. Amani Stability of Quintom Model of Dark Energy in (ω, ω′) Phase Plane , 2011 .

[5]  D. Adak,et al.  Quintom scalar field dark energy model with a Gaussian potential: An explanation for the varying dark energy equation of state obtained from the analysis of SNe Ia, BAO and OHD data , 2011 .

[6]  J. Socorro,et al.  Anisotropic cosmology in Sáez-Ballester theory: classical and quantum solutions , 2010, 1007.3306.

[7]  Taotao Qiu THEORETICAL ASPECTS OF QUINTOM MODELS , 2010, 1002.3971.

[8]  J. Xia,et al.  Quintom Cosmology: theoretical implications and observations , 2009, 0909.2776.

[9]  P. Moniz Quantum Cosmology - The Supersymmetric Perspective - Vol. 1 , 2010 .

[10]  M. Setare,et al.  String Inspired Quintom Model with Non-minimally Coupled Modified Gravity , 2009, 0903.4073.

[11]  E. Saridakis Quintom evolution in power-law potentials , 2009, 0903.3840.

[12]  Ruth Lazkoz,et al.  Internal space structure generalization of the quintom cosmological scenario , 2008, 0811.3643.

[13]  E. Saridakis,et al.  Quintom dark energy models with nearly flat potentials , 2008, 0810.4775.

[14]  M. Setare,et al.  A non-minimally coupled quintom dark energy model on the warped DGP brane , 2008, 0810.1427.

[15]  E. Saridakis,et al.  Quintom Cosmology with General Potentials , 2008, 0807.3807.

[16]  Yi-Fu Cai,et al.  Dark energy model with spinor matter and its quintom scenario , 2008, 0806.3890.

[17]  M. Setare,et al.  Non-minimally coupled quintom model inspired by string theory , 2008, 0804.0553.

[18]  Yi-Fu Cai,et al.  On perturbations of a quintom bounce , 2007, 0711.2187.

[19]  Yi Cai,et al.  Bouncing universe with Quintom matter , 2007, 0704.1090.

[20]  R. Lazkoz,et al.  Quintom cosmologies with arbitrary potentials , 2007, astro-ph/0701353.

[21]  Bin Chen,et al.  A string-inspired quintom model of dark energy , 2007, hep-th/0701016.

[22]  L. Ureña-López,et al.  SCALAR POTENTIALS OUT OF CANONICAL QUANTUM COSMOLOGY , 2005, gr-qc/0506041.

[23]  H. M. Sadjadi,et al.  Transition from quintessence to the phantom phase in the quintom model , 2006, gr-qc/0605143.

[24]  Yang-Hong Zhang,et al.  Quintom Models with an Equation of State Crossing -1 , 2006, astro-ph/0604460.

[25]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[26]  R. Lazkoz,et al.  Quintom cosmologies admitting either tracking or phantom attractors , 2006, astro-ph/0602590.

[27]  Mingzhe Li,et al.  Oscillating quintom and the recurrent universe , 2004, astro-ph/0407432.

[28]  Yuan-zhong Zhang,et al.  Cosmological evolution of a quintom model of dark energy , 2004, astro-ph/0410654.

[29]  Xinmin Zhang,et al.  Dark energy constraints from the cosmic age and supernova , 2004, astro-ph/0404224.

[30]  N. Pinto-Neto,et al.  Noncommutative geometry and cosmology , 2004, hep-th/0407111.

[31]  A. D. Polyanin,et al.  Handbook of Exact Solutions for Ordinary Differential Equations, Second Edition , 2002 .

[32]  A. Liddle,et al.  A Classification of scalar field potentials with cosmological scaling solutions , 1998, astro-ph/9809272.

[33]  P. Ferreira,et al.  Cosmology with a primordial scaling field , 1997, astro-ph/9711102.

[34]  O. Obregón,et al.  Ψ=We±Φ Quantum cosmological solutions for class A Bianchi models , 1995, gr-qc/9506021.

[35]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .