Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes

[1]  Heng Zhang,et al.  Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. , 2018, Angewandte Chemie.

[2]  Yantao Zhang,et al.  Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes , 2018, Joule.

[3]  Kun Fu,et al.  3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries , 2018, Energy Storage Materials.

[4]  Bingbing Chen,et al.  Progress and prospect on failure mechanisms of solid-state lithium batteries , 2018, Journal of Power Sources.

[5]  Li-zhen Fan,et al.  Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries , 2018, Journal of Power Sources.

[6]  S. Passerini,et al.  Hybrid electrolytes for lithium metal batteries , 2018, Journal of Power Sources.

[7]  Jonas Mindemark,et al.  Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes , 2018, Progress in Polymer Science.

[8]  D. Xie,et al.  In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries , 2018 .

[9]  Ya‐Xia Yin,et al.  Mitigating Interfacial Potential Drop of Cathode-Solid Electrolyte via Ionic Conductor Layer To Enhance Interface Dynamics for Solid Batteries. , 2018, Journal of the American Chemical Society.

[10]  Bin Liu,et al.  Advancing Lithium Metal Batteries , 2018 .

[11]  L. Ci,et al.  Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries. , 2018, ACS applied materials & interfaces.

[12]  Yi Cui,et al.  Wood‐Inspired High‐Performance Ultrathick Bulk Battery Electrodes , 2018, Advanced materials.

[13]  L. M. Rodriguez-Martinez,et al.  Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes , 2018 .

[14]  S. C. Parker,et al.  Particle Morphology and Lithium Segregation to Surfaces of the Li7La3Zr2O12 Solid Electrolyte , 2018, 1804.05165.

[15]  Hong Li,et al.  Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries , 2018, npj Computational Materials.

[16]  Yunhui Gong,et al.  Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework , 2018, Proceedings of the National Academy of Sciences.

[17]  Xiulin Fan,et al.  Interphase Engineering Enabled All-Ceramic Lithium Battery , 2018 .

[18]  Fan Li,et al.  A durable and safe solid-state lithium battery with a hybrid electrolyte membrane , 2018 .

[19]  Yu-Guo Guo,et al.  Lithiation-Derived Repellent toward Lithium Anode Safeguard in Quasi-solid Batteries , 2018 .

[20]  Ya‐Xia Yin,et al.  Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. , 2018, Journal of the American Chemical Society.

[21]  A. Eftekhari,et al.  Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries , 2017, Scientific Reports.

[22]  Allen Pei,et al.  Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium , 2017, ACS central science.

[23]  Yutao Li,et al.  PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic” , 2017 .

[24]  L. M. Rodriguez-Martinez,et al.  Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries. , 2017, Angewandte Chemie.

[25]  Luyi Yang,et al.  Flexible Composite Solid Electrolyte Facilitating Highly Stable “Soft Contacting” Li–Electrolyte Interface for Solid State Lithium‐Ion Batteries , 2017 .

[26]  E. Olivetti,et al.  Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals , 2017 .

[27]  H. Chung,et al.  Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell , 2017 .

[28]  P. Jena,et al.  Li-rich antiperovskite superionic conductors based on cluster ions , 2017, Proceedings of the National Academy of Sciences.

[29]  K. Zaghib,et al.  Safety of solid-state Li metal battery: Solid polymer versus liquid electrolyte , 2017 .

[30]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[31]  Kun Fu,et al.  Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries. , 2017, Nano letters.

[32]  T. Leichtweiss,et al.  Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes , 2017 .

[33]  Kun Fu,et al.  Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by a Germanium Layer , 2017, Advanced materials.

[34]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[35]  L. M. Rodriguez-Martinez,et al.  Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application , 2017 .

[36]  Dingchang Lin,et al.  Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires , 2017, Nature Energy.

[37]  Yang Shen,et al.  Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach. , 2017, ACS applied materials & interfaces.

[38]  Jian-jun Zhang,et al.  High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery , 2017 .

[39]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[40]  Lucienne Buannic,et al.  Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal. , 2017, ACS applied materials & interfaces.

[41]  Ekin D. Cubuk,et al.  Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials , 2017 .

[42]  Yutao Li,et al.  Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12 , 2016 .

[43]  Miao Zhang,et al.  Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide , 2016 .

[44]  Y. Qi,et al.  Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer. , 2016, Accounts of chemical research.

[45]  Erqing Zhao,et al.  Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries , 2016 .

[46]  Yutao Li,et al.  Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries. , 2016, Angewandte Chemie.

[47]  Shaofei Wang,et al.  Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. , 2016, Journal of the American Chemical Society.

[48]  Yibo Wang,et al.  Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries , 2016, Proceedings of the National Academy of Sciences.

[49]  Y. Tominaga,et al.  A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature , 2016 .

[50]  T. Takeuchi,et al.  All-solid-state lithium-ion battery using Li2.2C0.8B0.2O3 electrolyte , 2016 .

[51]  Kota Suzuki,et al.  Bulk-Type All Solid-State Batteries with 5 V Class LiNi0.5Mn1.5O4 Cathode and Li10GeP2S12 Solid Electrolyte , 2016 .

[52]  Chunsheng Wang,et al.  Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes , 2016 .

[53]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[54]  J. Goodenough,et al.  Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells , 2016 .

[55]  F. Ding,et al.  Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte , 2016 .

[56]  Ya‐Xia Yin,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.

[57]  Yizhou Zhu,et al.  First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries , 2016 .

[58]  D. J. Lee,et al.  Sustainable Redox Mediation for Lithium–Oxygen Batteries by a Composite Protective Layer on the Lithium‐Metal Anode , 2016, Advanced materials.

[59]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[60]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[61]  Daniel Brandell,et al.  High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature , 2015 .

[62]  K. Reuter,et al.  Interfacial challenges in solid-state Li ion batteries. , 2015, The journal of physical chemistry letters.

[63]  B. McCloskey,et al.  Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes. , 2015, The journal of physical chemistry letters.

[64]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[65]  M. Armand,et al.  All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes. , 2015, ChemSusChem.

[66]  W. Richards,et al.  First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets , 2015 .

[67]  Chunsheng Wang,et al.  A Battery Made from a Single Material , 2015, Advanced materials.

[68]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[69]  J. Tu,et al.  An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries , 2015 .

[70]  Y. Iriyama,et al.  In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery , 2014 .

[71]  D. A. Bograchev,et al.  Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes , 2014, Journal of Solid State Electrochemistry.

[72]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[73]  B. Scrosati,et al.  A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte , 2013 .

[74]  L. Daemen,et al.  Superionic conductivity in lithium-rich anti-perovskites. , 2012, Journal of the American Chemical Society.

[75]  J. Tarascon,et al.  The Stone Age Revisited: Building a Monolithic Inorganic Lithium‐Ion Battery , 2012 .

[76]  D. Aurbach,et al.  On the Thermal Stability of Olivine Cathode Materials for Lithium-Ion Batteries , 2011 .

[77]  M. Hirayama,et al.  A lithium superionic conductor. , 2011, Nature materials.

[78]  J. Tarascon,et al.  A New Approach to Develop Safe All‐Inorganic Monolithic Li‐Ion Batteries , 2011 .

[79]  M. Armand,et al.  Building better batteries , 2008, Nature.

[80]  K. Tadanaga,et al.  Design of composite positive electrode in all-solid-state secondary batteries with Li2S-P2S5 glass-ceramic electrolytes , 2005 .

[81]  Jean-Marie Tarascon,et al.  Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells , 2002 .

[82]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[83]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[84]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[85]  B. Scrosati,et al.  Interfacial phenomena in polymer-electrolyte cells: lithium passivation and cycleability , 1993 .

[86]  B. Steele,et al.  Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes , 1982 .

[87]  B. Boukamp,et al.  Lithium ion conductivity in lithium nitride , 1976 .

[88]  Yunhui Gong,et al.  High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture , 2019, Materials Today.

[89]  Asma Sharafi,et al.  Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte , 2017 .

[90]  Feng Wu,et al.  A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries , 2016 .