Regularization Methods for SDP Relaxations in Large-Scale Polynomial Optimization

We study how to solve semidefinite programming (SDP) relaxations for large-scale polynomial optimization. When interior-point methods are used, typically only small or moderately large problems could be solved. This paper studies regularization methods for solving polynomial optimization problems. We describe these methods for semidefinite optimization with block structures and then apply them to solve large-scale polynomial optimization problems. The performance is tested on various numerical examples. With regularization methods, significantly bigger problems could be solved on a regular computer, which is almost impossible with interior point methods.

[1]  Jiawang Nie An Approximation Bound Analysis for Lasserre’s Relaxation in Multivariate Polynomial Optimization , 2013 .

[2]  Yinyu Ye,et al.  Semidefinite programming for ad hoc wireless sensor network localization , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[3]  Masakazu Kojima,et al.  Sparsity in sums of squares of polynomials , 2005, Math. Program..

[4]  Franz Rendl,et al.  Regularization Methods for Semidefinite Programming , 2009, SIAM J. Optim..

[5]  Masakazu Kojima,et al.  SDPA-M (SemiDefinite Programming Algorithm in MATLAB) User's Manual — Version 6.2.0 , 2003 .

[6]  J. Malick,et al.  Projection methods in conic optimization , 2011, 1103.1511.

[7]  Masakazu Kojima,et al.  Exploiting Sparsity in SDP Relaxation for Sensor Network Localization , 2009, SIAM J. Optim..

[8]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[9]  Masakazu Kojima,et al.  Generalized Lagrangian Duals and Sums of Squares Relaxations of Sparse Polynomial Optimization Problems , 2005, SIAM J. Optim..

[10]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[11]  Bernard Mourrain,et al.  A generalized flat extension theorem for moment matrices , 2009 .

[12]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[13]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[14]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[15]  Pablo A. Parrilo,et al.  Minimizing Polynomial Functions , 2001, Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.

[16]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[17]  Jean B. Lasserre A Sum of Squares Approximation of Nonnegative Polynomials , 2006, SIAM J. Optim..

[18]  Kim-Chuan Toh,et al.  A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..

[19]  V. Powers,et al.  Representations of positive polynomials on noncompact semialgebraic sets via KKT ideals , 2007 .

[20]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[21]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[22]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[23]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[24]  James Demmel,et al.  Sparse SOS Relaxations for Minimizing Functions that are Summations of Small Polynomials , 2008, SIAM J. Optim..

[25]  Jiawang Nie Sum of squares methods for minimizing polynomial forms over spheres and hypersurfaces , 2012 .

[26]  Grigoriy Blekherman There are significantly more nonegative polynomials than sums of squares , 2003, math/0309130.

[27]  Markus Schweighofer,et al.  Optimization of Polynomials on Compact Semialgebraic Sets , 2005, SIAM J. Optim..

[28]  Raul E. Curto,et al.  Truncated K-moment problems in several variables , 2005 .

[29]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[30]  Jiawang Nie,et al.  Sum of squares method for sensor network localization , 2006, Comput. Optim. Appl..

[31]  Jean B. Lasserre,et al.  A semidefinite programming approach to the generalized problem of moments , 2007, Math. Program..

[32]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[33]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations in Polynomial Optimization with Sparsity , 2006, SIAM J. Optim..

[34]  Etienne de Klerk,et al.  Approximation of the Stability Number of a Graph via Copositive Programming , 2002, SIAM J. Optim..

[35]  J. Lasserre,et al.  Detecting global optimality and extracting solutions in GloptiPoly , 2003 .

[36]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[37]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[38]  R. Curto,et al.  The truncated complex -moment problem , 2000 .

[39]  Franz Rendl,et al.  A Boundary Point Method to Solve Semidefinite Programs , 2006, Computing.

[40]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[41]  Pablo A. Parrilo,et al.  Exploiting structure in sum of squares programs , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[42]  Jérôme Malick,et al.  Projection methods for conic feasibility problems: applications to polynomial sum-of-squares decompositions , 2011, Optim. Methods Softw..

[43]  A. Fialkow,et al.  THE TRUNCATED COMPLEX K-MOMENT PROBLEM , 2000 .

[44]  Etienne de Klerk,et al.  Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming , 2002, J. Glob. Optim..

[45]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[46]  Monique Laurent,et al.  Semidefinite Approximations for Global Unconstrained Polynomial Optimization , 2005, SIAM J. Optim..

[47]  Monique Laurent,et al.  Semidefinite optimization , 2019, Graphs and Geometry.

[48]  Dimitris Bertsimas,et al.  An Accelerated First-Order Method for Solving Unconstrained Polynomial Optimization Problems , 2011 .

[49]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[50]  Y. Nesterov Random walk in a simplex and quadratic optimization over convex polytopes , 2003 .

[51]  James Demmel,et al.  Minimizing Polynomials via Sum of Squares over the Gradient Ideal , 2004, Math. Program..