Isogeometric shape optimisation of shell structures using multiresolution subdivision surfaces

Abstract We introduce the isogeometric shape optimisation of thin shell structures using subdivision surfaces. Both triangular Loop and quadrilateral Catmull–Clark subdivision schemes are considered for geometry modelling and finite element analysis. A gradient-based shape optimisation technique is implemented to minimise compliance, i.e. to maximise stiffness. Different control meshes describing the same surface are used for geometry representation, optimisation and finite element analysis. The finite element analysis is performed with subdivision basis functions corresponding to a sufficiently refined control mesh. During iterative shape optimisation the geometry is updated starting from the coarsest control mesh and proceeding to increasingly finer control meshes. This multiresolution approach provides a means for regularising the optimisation problem and prevents the appearance of sub-optimal jagged geometries with fine-scale oscillations. The finest control mesh for optimisation is chosen in accordance with the desired smallest feature size in the optimised geometry. The proposed approach is applied to three optimisation examples, namely a catenary, a roof over a rectangular domain and a freeform architectural shell roof. The influence of the geometry description and the used subdivision scheme on the obtained optimised curved geometries is investigated in detail.

[1]  Ronald Maier,et al.  Integrated Modeling , 2011, Encyclopedia of Knowledge Management.

[2]  Edward J. Haug,et al.  Design Sensitivity Analysis of Structural Systems , 1986 .

[3]  Chau H. Le,et al.  A gradient-based, parameter-free approach to shape optimization , 2011 .

[4]  Olaf Steinbach,et al.  Boundary element based multiresolution shape optimisation in electrostatics , 2015, J. Comput. Phys..

[5]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[6]  Roland Wüchner,et al.  Regularization of shape optimization problems using FE-based parametrization , 2013 .

[7]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[8]  E. Ramm,et al.  Form finding of shells by structural optimization , 1993, Engineering with Computers.

[9]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[10]  F. Cirak,et al.  A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .

[11]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[12]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[13]  Fehmi Cirak,et al.  Isogeometric analysis using manifold-based smooth basis functions , 2016, ArXiv.

[14]  Carolina Vittoria Beccari,et al.  Subdivision surfaces integrated in a CAD system , 2013, Comput. Aided Des..

[15]  Fehmi Cirak,et al.  Shear‐flexible subdivision shells , 2012 .

[16]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[17]  M. Sabin,et al.  NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes , 2009, SIGGRAPH 2009.

[18]  Fehmi Cirak,et al.  Subdivision shells with exact boundary control and non‐manifold geometry , 2011 .

[19]  E. H. Lockwood,et al.  A Book of Curves , 1963, The Mathematical Gazette.

[20]  Thomas J. R. Hughes,et al.  Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .

[21]  Kai-Uwe Bletzinger,et al.  A consistent frame for sensitivity filtering and the vertex assigned morphing of optimal shape , 2014, Structural and Multidisciplinary Optimization.

[22]  R. Haftka,et al.  Structural shape optimization — a survey , 1986 .

[23]  Jos Stam,et al.  Evaluation of Loop Subdivision Surfaces , 2010 .

[24]  Konrad Polthier,et al.  Integration of generalized B-spline functions on Catmull-Clark surfaces at singularities , 2016, Comput. Aided Des..

[25]  Zafer Gürdal,et al.  Isogeometric sizing and shape optimisation of beam structures , 2009 .

[26]  Fehmi Cirak,et al.  Shape optimisation with multiresolution subdivision surfaces and immersed finite elements , 2015, ArXiv.

[27]  Anders Klarbring,et al.  An Introduction to Structural Optimization , 2008 .

[28]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[29]  Xiaocong Han,et al.  An adaptive geometry parametrization for aerodynamic shape optimization , 2014 .

[30]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[31]  O. Amoignon,et al.  Mesh Deformation using Radial Basis Functions for Gradient-based Aerodynamic Shape Optimization , 2007 .

[32]  J. Samareh Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization , 2001 .

[33]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[34]  Francesco Iorio,et al.  Parameters tell the design story: ideation and abstraction in design optimization , 2014, ANSS 2014.

[35]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[36]  Cecil Armstrong,et al.  Optimizing parameterized CAD geometries using sensitivities based on adjoint functions , 2012 .

[37]  Xiao Xiao,et al.  Isogeometric shape optimisation of shell structures using multiresolution subdivision surfaces , 2016 .

[38]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[39]  M. Imam Three‐dimensional shape optimization , 1982 .

[40]  Ekkehard Ramm,et al.  Buckling and imperfection sensitivity in the optimization of shell structures , 1995 .

[41]  Jon Trevelyan,et al.  Evolutionary structural optimisation based on boundary representation of NURBS. Part I: 2D algorithms , 2005 .

[42]  Bert Jüttler,et al.  On numerical integration in isogeometric subdivision methods for PDEs on surfaces , 2016 .

[43]  Denis Zorin,et al.  Differentiable parameterization of Catmull-Clark subdivision surfaces , 2004, SGP '04.

[44]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .