A unified approach to infrared aerosol remote sensing and type specification

Abstract. Atmospheric aerosols impact air quality and global climate. Space based measurements are the best way to observe their spatial and temporal distributions, and can also be used to gain better understanding of their chemical, physical and optical properties. Aerosol composition is the key parameter affecting the refractive index, which determines how much radiation is scattered and absorbed. Composition of aerosols is unfortunately not measured by state of the art satellite remote sounders. Here we use high resolution infrared measurements for aerosol type differentiation, exploiting, in that part of spectrum, the dependency of their refractive index on wavelength. We review existing detection methods and present a unified detection method based on linear discrimination analysis. We demonstrate this method on measurements of the Infrared Atmospheric Sounding Interferometer (IASI) and five different aerosol types, namely volcanic ash, windblown sand, sulfuric acid droplets, ammonium sulfate and smoke particles. We compare these with traditional MODIS AOD measurements. The detection of the last three types is unprecedented in the infrared in nadir mode, but is very promising, especially for sulfuric acid droplets which are detected in the lower troposphere and up to 6 months after injection in the upper troposphere/lower stratosphere.

[1]  S. Massie,et al.  Global evolution of the Mt. Pinatubo volcanic aerosols observed by the infrared limb‐sounding instruments CLAES and ISAMS on the Upper Atmosphere Research Satellite , 1997 .

[2]  M. Chin,et al.  A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .

[3]  Owen B. Toon,et al.  Optical properties of some terrestrial rocks and glasses. , 1973 .

[4]  S. Martin,et al.  Infrared optical constants of aqueous sulfate-nitrate-ammonium multi-component tropospheric aerosols from attenuated total reflectance measurements—Part I: Results and analysis of spectral absorbing features , 2007 .

[5]  Alfred J Prata,et al.  Infrared radiative transfer calculations for volcanic ash clouds , 1989 .

[6]  Lieven Clarisse,et al.  Retrieval of sulphur dioxide from the infrared atmospheric sounding interferometer (IASI) , 2011 .

[7]  A. Lambert,et al.  Infrared absorption by volcanic stratospheric aerosols observed by ISAMS , 1993 .

[8]  Michel Legrand,et al.  Satellite detection of dust using the IR imagery of Meteosat: 1. Infrared difference dust index , 2001 .

[9]  Kuo-Nan Liou,et al.  Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra , 2009 .

[10]  F. Irion,et al.  Vertical profiles of aerosol volume from high spectral resolution infrared transmission measurements: Results , 2004 .

[11]  S. Carn,et al.  Prodigious sulfur dioxide emissions from Nyamuragira volcano , , 2003 .

[12]  Paul Pellegrino,et al.  Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data , 1992 .

[13]  Simon A. Carn,et al.  Properties of Sarychev sulphate aerosols over the Arctic , 2012 .

[14]  Lieven Clarisse,et al.  Retrieving radius, concentration, optical depth, and mass of different types of aerosols from high-resolution infrared nadir spectra. , 2010, Applied optics.

[15]  Dudley A. Williams,et al.  Optical constants of ammonium sulfate in the infrared. [stratospheric aerosol refractive and absorption indices] , 1977 .

[16]  Larry W. Thomason,et al.  Radiative forcing from the 1991 Mount Pinatubo volcanic eruption , 1998 .

[17]  Frédéric Parol,et al.  Information Content of AVHRR Channels 4 and 5 with Respect to the Effective Radius of Cirrus Cloud Particles , 1991 .

[18]  S. Carn,et al.  Exceptional sulfur degassing from Nyamuragira volcano, 1979–2005 , 2008 .

[19]  A. Stohl,et al.  Determination of time-and height-resolved volcanic ash emissions for quantitative ash dispersion modeling : the 2010 Eyjafjallajökull eruption , 2011 .

[20]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[21]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[22]  Craig S. Long,et al.  using the NOAA/AVHRR to study stratospheric aerosol optical thicknesses following the Mt. Pinatubo Eruption , 1994 .

[23]  J. V. Gent,et al.  Volcanic SO 2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS , 2012 .

[24]  Sang Woo Kim,et al.  Aerosol hygroscopic properties during Asian dust, pollution, and biomass burning episodes at Gosan, Korea in April 2001 , 2006 .

[25]  William I. Rose,et al.  Fine ash content of explosive eruptions , 2009 .

[26]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[27]  Michael Kiefer,et al.  On the role of non-random errors in inverse problems in radiative transfer and other applications , 2001 .

[28]  G. Mann,et al.  Excess mortality in Europe following a future Laki-style Icelandic eruption , 2011, Proceedings of the National Academy of Sciences.

[29]  Theofanis Sapatinas,et al.  Discriminant Analysis and Statistical Pattern Recognition , 2005 .

[30]  W. Paul Menzel,et al.  Cloud Properties inferred from 812-µm Data , 1994 .

[31]  M. Deeter,et al.  Satellite-observed pollution from Southern Hemisphere biomass burning. , 2006 .

[32]  Lieven Clarisse,et al.  Observations of the eruption of the Sarychev volcano and simulations using the HadGEM2 climate model. , 2010 .

[33]  A. Krueger,et al.  Ice in the 1994 Rabaul eruption cloud: implications for volcano hazard and atmospheric effects , 1995, Nature.

[34]  R. Turco,et al.  An analysis of various nucleation mechanisms for sulfate particles in the stratosphere , 1982 .

[35]  J. Pommereau,et al.  Overshooting of Clean Tropospheric Air in the Tropical Lower Stratosphere as Seen by the CALIPSO Lidar , 2011 .

[36]  Cyril Moulin,et al.  Improvement of the detection of desert dust over the Sahel using METEOSAT IR imagery , 2006 .

[37]  Mian Chin,et al.  Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing , 2003 .

[38]  F. Yu,et al.  Regional and global modeling of aerosol optical properties with a size, composition, and mixing state resolved particle microphysics model , 2012 .

[39]  D. Diner,et al.  Desert Dust Satellite Retrieval Intercomparison , 2012 .

[40]  Raphael Linker,et al.  Extraction of optical constants from mid-IR spectra of small aerosol particles , 2008 .

[41]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[42]  Roy G. Grainger,et al.  Improved detection of sulphur dioxide in volcanic plumes using satellite-based hyperspectral infrared measurements: Application to the Eyjafjallajökull 2010 eruption , 2012 .

[43]  Ulrich Poeschl,et al.  Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects , 2006 .

[44]  D. Diner,et al.  Intercomparison of desert dust optical depth from satellite measurements , 2012 .

[45]  Yoram J. Kaufman,et al.  Monitoring of aerosol forcing of climate from space: analysis of measurement requirements , 2004, Journal of Quantitative Spectroscopy and Radiative Transfer.

[46]  Alvin C. Rencher,et al.  Methods of multivariate analysis (second edition) , 2002 .

[47]  Kerstin Stebel,et al.  Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption , 2011 .

[48]  Lieven Clarisse,et al.  A correlation method for volcanic ash detection using hyperspectral infrared measurements , 2010 .

[49]  Man-Li C. Wu A Method for Remote Sensing the Emissivity, Fractional Cloud Cover and Cloud Top Temperature of High-Level, Thin Clouds , 1987 .

[50]  Lieven Clarisse,et al.  Global ammonia distribution derived from infrared satellite observations , 2009 .

[51]  Hermann Oelhaf,et al.  Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb emission spectra , 1998 .

[52]  W. J. Lafferty,et al.  Line intensities for the ? 1, ? 3 and ? 1+ ? 3 bands of 34SO 2 , 2009 .

[53]  A. Robock,et al.  SIMULATION AND OBSERVATIONS OF STRATOSPHERIC AEROSOLS FROM THE 2009 SARYCHEV VOLCANIC ERUPTION , 2011 .

[54]  F. Bréon,et al.  Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission , 2011 .

[55]  Adam E. Bourassa,et al.  Evolution of the stratospheric aerosol enhancement following the eruptions of Okmok and Kasatochi: Odin‐OSIRIS measurements , 2010 .

[56]  Alfred J Prata,et al.  Satellite detection of hazardous volcanic clouds and the risk to global air traffic , 2009 .

[57]  Irina N. Sokolik,et al.  Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths , 1999 .

[58]  Lieven Clarisse,et al.  Thermal infrared nadir observations of 24 atmospheric gases , 2011 .

[59]  R. Norton,et al.  Analysis of spectra using correlation functions. , 1988, Applied Optics.

[60]  Menghua Wang,et al.  Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective , 2009 .

[61]  Lieven Clarisse,et al.  Monitoring of atmospheric composition using the thermal infrared IASI/METOP sounder , 2009 .

[62]  S. Ackerman Remote sensing aerosols using satellite infrared observations , 1997 .

[63]  Hung-Lung Huang,et al.  Application of Principal Component Analysis to High-Resolution Infrared Measurement Compression and Retrieval , 2001 .

[64]  Alfred J Prata,et al.  Eyjafjallajökull volcanic ash concentrations determined using Spin Enhanced Visible and Infrared Imager measurements , 2012 .

[65]  Lieven Clarisse,et al.  Tracking and quantifying volcanic SO 2 with IASI, the September 2007 eruption at Jebel at Tair , 2008 .

[66]  P. Bernath,et al.  Observation of sulfate aerosols and SO2 from the Sarychev volcanic eruption using data from the Atmospheric Chemistry Experiment (ACE) , 2012 .

[67]  F. Irion,et al.  Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology. , 2001, Applied optics.

[68]  D. Jacob,et al.  Global distribution of solid and aqueous sulfate aerosols: Effect of the hysteresis of particle phase transitions , 2007 .

[69]  B. Holben,et al.  Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model , 2002 .

[70]  S. Carn,et al.  Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation , 2009 .

[71]  T. Casadevall First international symposium on Volcanic ash and aviation safety , 1991 .

[72]  R. Turco,et al.  Stratospheric aerosols: Observation and theory , 1982 .

[73]  K. Smith,et al.  Laboratory measurements of the optical properties of sea salt aerosol , 2008 .

[74]  Teodosio Lacava,et al.  Improving volcanic ash cloud detection by a robust satellite technique , 2004 .

[75]  J. Hansen,et al.  Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission , 2007 .

[76]  Thomas Trautmann,et al.  Thermal IR radiative properties of mixed mineral dust and biomass aerosol during SAMUM-2 , 2011 .

[77]  Guido Masiello,et al.  Homomorphism between cloudy and clear spectral radiance in the 800-900-cm(-1) atmospheric window region. , 2002, Applied optics.

[78]  Gary A. Morris,et al.  Dispersion and lifetime of the SO2 cloud from the August 2008 Kasatochi eruption , 2010 .

[79]  E. Shettle,et al.  Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .

[80]  Qi Zhang,et al.  Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes , 2007 .

[81]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[82]  Tim Hultberg,et al.  Potential for the use of reconstructed IASI radiances in the detection of atmospheric trace gases , 2010 .

[83]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[84]  William L. Smith,et al.  A principal component noise filter for high spectral resolution infrared measurements , 2004 .

[85]  Toshihiko Takemura,et al.  Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud–East Asia Regional Experiment campaign , 2007 .

[86]  C. Clerbaux,et al.  Aerosol type specification in the infrared , 2012 .

[87]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[88]  Toshiro Inoue,et al.  On the Temperature and Effective Emissivity Determination of Semi-Transparent Cirrus Clouds by Bi-Spectral Measurements in the 10μm Window Region , 1985 .

[89]  M. Chin,et al.  Aerosol anthropogenic component estimated from satellite data , 2005 .

[90]  Alain Chedin,et al.  Retrieving the effective radius of Saharan dust coarse mode from AIRS , 2005 .

[91]  S. Carn,et al.  Prodigious sulfur dioxide emissions from Nyamuragira volcano, D.R. Congo , 2003 .

[92]  Manfred Wendisch,et al.  Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging , 2009 .

[93]  E. Remsberg Optical constants of concentrated aqueous ammonium sulfate. , 1973, Applied optics.

[94]  Vicki H. Grassian,et al.  Interactions between Mineral Dust, Climate, and Ocean Ecosystems , 2010 .

[95]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[96]  Ulrich Pöschl,et al.  Atmospheric aerosols: composition, transformation, climate and health effects. , 2005, Angewandte Chemie.

[97]  Lieven Clarisse,et al.  The infrared spectral signature of volcanic ash determined from high-spectral resolution satellite measurements , 2010 .

[98]  Lieven Clarisse,et al.  FORLI radiative transfer and retrieval code for IASI , 2012 .

[99]  Makiko Sato,et al.  Earth's energy imbalance and implications , 2011, 1105.1140.

[100]  William I. Rose,et al.  Atmospheric correction for satellite‐based volcanic ash mapping and retrievals using “split window” IR data from GOES and AVHRR , 2002 .

[101]  C. Justice,et al.  Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors , 2006 .

[102]  A. Eldering,et al.  Simulations of the accuracy in retrieving stratospheric aerosol effective radius, composition, and loading from infrared spectral transmission measurements. , 2006, Applied optics.

[103]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[104]  Franco Marenco,et al.  A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 2. Airborne and satellite radiative measurements , 2012 .

[105]  Thilo Erbertseder,et al.  Observation of volcanic ash from Puyehue–Cordón Caulle with IASI , 2012 .

[106]  Scott E. Hannon,et al.  Quantifying tropospheric volcanic emissions with AIRS: The 2002 eruption of Mt. Etna (Italy) , 2005 .

[107]  John H. Seinfeld,et al.  Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model , 1999 .

[108]  C. Serio,et al.  Cloud Detection Over Sea Surface by use of Autocorrelation Functions of Upwelling Infrared Spectra in the 800-900-cm(-1) Window Region. , 2000, Applied optics.

[109]  P. Hamill,et al.  A stratospheric aerosol climatology from SAGE II and CLAES measurements: 2. Results and comparisons, 1984–1999 , 2003 .

[110]  Michael J. Pavolonis,et al.  A Daytime Complement to the Reverse Absorption Technique for Improved Automated Detection of Volcanic Ash , 2006 .

[111]  William I. Rose,et al.  Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5 , 1994 .

[112]  F. Volz,et al.  Infrared refractive index of atmospheric aerosol substances. , 1972, Applied optics.

[113]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[114]  H. M. Steele,et al.  Effects of temperature and humidity on the growth and optical properties of sulphuric acid—water droplets in the stratosphere , 1981 .

[115]  D. Roy,et al.  The collection 5 MODIS burned area product — Global evaluation by comparison with the MODIS active fire product , 2008 .

[116]  L. Thomason,et al.  A global climatology of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984–1994 , 1997 .

[117]  A. Robock Volcanic eruptions and climate , 2000 .

[118]  W. Paul Menzel,et al.  Retrieval of Cloud Microphysical Properties from MODIS and AIRS , 2005 .

[119]  Steven A. Ackerman,et al.  Using the radiative temperature difference at 3.7 and 11 μm to tract dust outbreaks , 1989 .

[120]  R. A. Sutherland,et al.  Optical Properties of Organic-based Aerosols Produced by Burning Vegetation , 1991 .

[121]  Maddalena Ragona,et al.  The 2010 Volcanic Ash Cloud and Its Financial Impact on the European Airline Industry , 2010 .

[122]  Alfred J Prata,et al.  Retrieval of volcanic SO2 column abundance from Atmospheric Infrared Sounder data , 2007 .

[123]  F. Volz,et al.  Infrared absorption by atmospheric aerosol substances , 1972 .

[124]  Luca Merucci,et al.  Volcanic ash and SO2 in the 2008 Kasatochi eruption: Retrievals comparison from different IR satellite sensors , 2010 .

[125]  Adam E. Bourassa,et al.  Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport , 2012, Science.

[126]  Lieven Clarisse,et al.  Detection of volcanic SO2, ash, and H2SO4 using the Infrared Atmospheric Sounding Interferometer (IASI) , 2010 .

[127]  S. Christopher,et al.  A reanalysis of MODIS fine mode fraction over ocean using OMI and daily GOCART simulations , 2010 .

[128]  R. Grainger,et al.  Transport of Mt. Pinatubo aerosol by tropospheric synoptic‐scale and stratospheric planetary‐scale waves , 1998 .

[129]  T. Eck,et al.  A review of biomass burning emissions part III: intensive optical properties of biomass burning particles , 2004 .

[130]  Didier Tanré,et al.  Infrared retrievals of dust using AIRS: Comparisons of optical depths and heights derived for a North African dust storm to other collocated EOS A‐Train and surface observations , 2010 .

[131]  P. Levelt,et al.  Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview , 2007 .

[132]  Didier Tanré,et al.  Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic – comparison to MODIS and CALIPSO , 2009 .

[133]  Anu Dudhia,et al.  An effective method for the detection of trace species demonstrated using the MetOp Infrared Atmospheric Sounding Interferometer , 2010 .

[134]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[135]  G. Mann,et al.  Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate , 2012 .

[136]  Owen B. Toon,et al.  Infrared optical constants of low‐temperature H2SO4 solutions representative of stratospheric sulfate aerosols , 1998 .

[137]  K. I. Kondratʹev,et al.  Atmospheric Aerosol Properties: Formation, Processes and Impacts , 2005 .

[138]  Christopher D. Barnet,et al.  Hyperspectral Earth Observation from IASI: Five Years of Accomplishments , 2012 .

[139]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[140]  T. Holzer-Popp,et al.  Thermal infrared remote sensing of mineral dust over land and ocean: a spectral SVD based retrieval approach for IASI , 2011 .

[141]  L. Larrabee Strow,et al.  Infrared dust spectral signatures from AIRS , 2006 .

[142]  Donald W. Hillger,et al.  Improved detection of airborne volcanic ash using multispectral infrared satellite data , 2003 .

[143]  Soon-Chang Yoon,et al.  Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements , 2007 .

[144]  Lieven Clarisse,et al.  IASI measurements of reactive trace species in biomass burning plumes , 2009 .

[145]  Alain Chedin,et al.  Dust altitude and infrared optical depth from AIRS , 2004 .

[146]  Shepard A. Clough,et al.  Near micron‐sized cirrus cloud particles in high‐resolution infrared spectra: An orographic case study , 2003 .

[147]  M. Earle,et al.  Temperature-dependent complex indices of refraction for crystalline (NH(4))(2)SO(4). , 2006, The journal of physical chemistry. A.

[148]  A. Dudhia,et al.  Cloud detection for MIPAS using singular vector decomposition , 2009 .

[149]  Owen B. Toon,et al.  The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride , 1976 .

[150]  Zhanqing Li,et al.  Long-term impacts of aerosols on the vertical development of clouds and precipitation , 2011 .

[151]  Steven A. Ackerman,et al.  Satellite remote sensing of H2SO4 aerosol using the 8- to 12-μm window region: Application to Mount Pinatubo , 1994 .

[152]  F. Volz,et al.  Infrared optical constants of ammonium sulfate, sahara dust, volcanic pumice, and flyash. , 1973, Applied optics.