Mixed finite element analysis for generalized Darcy-Forchheimer model in porous media

Abstract We considered mixed finite element discretization of generalized Darcy–Forchheimer model in a two or three dimensional porous domain, using a piecewise constant and continuous piecewise linear finite elements. The existence, uniqueness, stability and convergence of the discrete solution are established. The error estimates for the velocity and pressure in L m and L m + 1 m respectively are obtained for any m ∈ ( 1 , 2 ] . Numerical examples are also presented to confirm the rate of convergence.

[1]  Jean-Luc Guermond,et al.  Nonlinear corrections to Darcy's law at low Reynolds numbers , 1997, Journal of Fluid Mechanics.

[2]  William G. Gray,et al.  High velocity flow in porous media , 1987 .

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[5]  Chiang C. Mei,et al.  The effect of weak inertia on flow through a porous medium , 1991, Journal of Fluid Mechanics.

[6]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[7]  J. Douglas,et al.  The stability inLq of theL2-projection into finite element function spaces , 1974 .

[8]  C. Kelley Solving Nonlinear Equations with Newton's Method , 1987 .

[9]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[10]  J. Auriault,et al.  High-Velocity Laminar and Turbulent Flow in Porous Media , 1999 .

[11]  Eun-Jae Park Mixed finite element methods for generalized Forchheimer flow in porous media , 2005 .

[12]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[13]  S. Chow Finite element error estimates for a blast furnace gas flow problem , 1992 .

[14]  Hilda López,et al.  An analysis of a mixed finite element method for a Darcy-Forchheimer model , 2013, Math. Comput. Model..

[15]  Abbas Firoozabadi,et al.  An Analysis of High-Velocity Gas Flow Through Porous Media , 1979 .

[16]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[17]  Eun-Jae Park,et al.  Fully discrete mixed finite element approximations for non-Darcy flows in porous media , 1999 .

[18]  Akif Ibragimov,et al.  Structural stability of generalized Forchheimer equations for compressible fluids in porous media , 2010 .

[19]  Mary F. Wheeler,et al.  Numerical discretization of a Darcy–Forchheimer model , 2008, Numerische Mathematik.

[20]  G. Chauveteau,et al.  Régimes d'écoulement en milieu poreux et limite de la loi de Darcy , 1967 .

[21]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[22]  Hongxing Rui,et al.  Mixed Element Method for Two-Dimensional Darcy-Forchheimer Model , 2012, J. Sci. Comput..