Transcending the impenetrable: how proteins come to terms with membranes.

[1]  F. Hartl,et al.  Successive translocation into and out of the mitochondrial matrix: Targeting of proteins to the intermembrane space by a bipartite signal peptide , 1987, Cell.

[2]  K. Ito,et al.  Topology analysis of the SecY protein, an integral membrane protein involved in protein export in Escherichia coli. , 1987, The EMBO journal.

[3]  G. Shore,et al.  The interaction of a synthetic mitochondrial signal peptide with lipid membranes is independent of transbilayer potential. , 1987, The EMBO journal.

[4]  A. Kuhn,et al.  The internal signal sequence of Escherichia coli leader peptidase is necessary, but not sufficient, for its rapid membrane assembly. , 1987, The Journal of biological chemistry.

[5]  E. D. De Robertis,et al.  The nuclear migration signal of Xenopus laevis nucleoplasmin. , 1987, The EMBO journal.

[6]  M. Spiess,et al.  Deletion analysis of the internal signal‐anchor domain of the human asialoglycoprotein receptor H1. , 1987, The EMBO journal.

[7]  R. Kelly,et al.  In vitro mutagenesis of trypsinogen: role of the amino terminus in intracellular protein targeting to secretory granules , 1987, The Journal of cell biology.

[8]  K. Furtak,et al.  The ornithine transcarbamylase leader peptide directs mitochondrial import through both its midportion structure and net positive charge , 1987, The Journal of cell biology.

[9]  D. Blank,et al.  Transport of proteins to the mitochondrial intermembrane space: the ‘matrix‐targeting’ and the ‘sorting’ domains in the cytochrome c1 presequence. , 1987, The EMBO journal.

[10]  K. Mihara,et al.  A short amino‐terminal segment of microsomal cytochrome P‐450 functions both as an insertion signal and as a stop‐transfer sequence. , 1987, The EMBO journal.

[11]  G. Schatz,et al.  Import of an incompletely folded precursor protein into isolated mitochondria requires an energized inner membrane, but no added ATP. , 1987, The EMBO journal.

[12]  W. Richardson,et al.  The effect of protein context on nuclear location signal function , 1987, Cell.

[13]  R. Gentz,et al.  A functional interaction between the signal peptide and the translation apparatus is detected by the use of a single point mutation which blocks translocation across mammalian endoplasmic reticulum. , 1987, The Journal of biological chemistry.

[14]  F. Nagy,et al.  Targeting of bacterial chloramphenicol acetyltransferase to mitochondria in transgenic plants , 1987, Nature.

[15]  M. Inouye,et al.  Wild type and mutant signal peptides of Escherichia coli outer membrane lipoprotein interact with equal efficiency with mammalian signal recognition particle. , 1987, The Journal of biological chemistry.

[16]  E. Freire,et al.  Thermodynamic characterization of interactions between ornithine transcarbamylase leader peptide and phospholipid bilayer membranes. , 1987, Biochemistry.

[17]  T. Rapoport,et al.  Protein translocation across wheat germ microsomal membranes requires an SRP‐like component , 1987, The EMBO journal.

[18]  G. Müller,et al.  Import of honeybee prepromelittin into the endoplasmic reticulum: structural basis for independence of SRP and docking protein. , 1987, The EMBO journal.

[19]  R. Lyons,et al.  Pentapeptide nuclear localization signal in adenovirus E1a , 1987, Molecular and cellular biology.

[20]  S. Miura,et al.  A small hydrophobic domain anchors leader peptidase to the cytoplasmic membrane of Escherichia coli. , 1987, The Journal of biological chemistry.

[21]  W. Neupert,et al.  Mitochondrial protein import: Nucleoside triphosphates are involved in conferring import-competence to precursors , 1987, Cell.

[22]  M. Douglas,et al.  Phosphodiester bond cleavage outside mitochondria is required for the completion of protein import into the mitochondrial matrix , 1987, Cell.

[23]  C. DeLisi,et al.  Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. , 1987, Journal of molecular biology.

[24]  G. Kreibich,et al.  The influenza hemagglutinin insertion signal is not cleaved and does not halt translocation when presented to the endoplasmic reticulum membrane as part of a translocating polypeptide , 1987, The Journal of cell biology.

[25]  R. E. Webster,et al.  Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli , 1987, Journal of bacteriology.

[26]  T. Sako,et al.  Role of amino-terminal positive charge on signal peptide in staphylokinase export across the cytoplasmic membrane of Escherichia coli. , 1987, The Journal of biological chemistry.

[27]  W. DeGrado,et al.  Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA-2. , 1987, The Journal of biological chemistry.

[28]  M. P. Gallagher,et al.  Molecular characterization of the oligopeptide permease of Salmonella typhimurium. , 1987, Journal of molecular biology.

[29]  T. Stevens,et al.  Yeast carboxypeptidase Y can be translocated and glycosylated without its amino-terminal signal sequence , 1987, The Journal of cell biology.

[30]  V. Lingappa,et al.  Translocation of globin fusion proteins across the endoplasmic reticulum membrane in Xenopus laevis oocytes , 1987, The Journal of cell biology.

[31]  K. Walsh,et al.  Suppression of a signal sequence mutation by an amino acid substitution in the mature portion of the maltose-binding protein , 1987, Journal of bacteriology.

[32]  D. Zakim,et al.  The spontaneous incorporation of proteins into preformed bilayers. , 1987, Biochimica et biophysica acta.

[33]  W. Neupert,et al.  Import of cytochrome c into mitochondria , 1987 .

[34]  M. Eilers,et al.  Both ATP and an energized inner membrane are required to import a purified precursor protein into mitochondria. , 1987, The EMBO journal.

[35]  J. Tommassen,et al.  A comparative study on the phoE genes of three enterobacterial species. Implications for structure-function relationships in a pore-forming protein of the outer membrane. , 1987, European journal of biochemistry.

[36]  M. Tanner,et al.  Human erythrocyte membrane sialoglycoprotein beta. The cDNA sequence suggests the absence of a cleaved N-terminal signal sequence. , 1987, The Biochemical journal.

[37]  G. Shore,et al.  Import of hybrid vesicular stomatitis G protein to the mitochondrial inner membrane. , 1987, The Journal of biological chemistry.

[38]  J. Knowles,et al.  The consequences of stepwise deletions from the signal-processing site of beta-lactamase. , 1987, The Journal of biological chemistry.

[39]  R. Stroud,et al.  Independent mutations at the amino terminus of a protein act as surrogate signals for mitochondrial import. , 1987, The EMBO journal.

[40]  R. Lamb,et al.  Ability of the hydrophobic fusion-related external domain of a paramyxovirus F protein to act as a membrane anchor , 1987, Cell.

[41]  E. Hurt,et al.  A cytosolic protein contains a cryptic mitochondrial targeting signal , 1987, Nature.

[42]  A. Frey,et al.  Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies , 1987, The Journal of cell biology.

[43]  M. Zerial,et al.  Foreign transmembrane peptides replacing the internal signal sequence of transferrin receptor allow its translocation and membrane binding , 1987, Cell.

[44]  D Botstein,et al.  Many random sequences functionally replace the secretion signal sequence of yeast invertase. , 1987, Science.

[45]  A. Vassarotti,et al.  Sequences distal to the mitochondrial targeting sequences are necessary for the maturation of the F1-ATPase beta-subunit precursor in mitochondria. , 1987, The Journal of biological chemistry.

[46]  D. Pilgrim,et al.  Primary structure requirements for correct sorting of the yeast mitochondrial protein ADH III to the yeast mitochondrial matrix space , 1987, Molecular and cellular biology.

[47]  G. Cesareni,et al.  A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae. , 1987, The EMBO journal.

[48]  F. Opperdoes,et al.  Common elements on the surface of glycolytic enzymes from Trypanosoma brucei may serve as topogenic signals for import into glycosomes. , 1987, The EMBO journal.

[49]  F. Hartl,et al.  Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol-cytochrome c reductase , 1986, Cell.

[50]  P. Weisbeek,et al.  A thylakoid processing protease is required for complete maturation of the lumen protein plastocyanin , 1986, Nature.

[51]  A. Kuhn,et al.  Both hydrophobic domains of M13 procoat are required to initiate membrane insertion. , 1986, The EMBO journal.

[52]  R. Lamb,et al.  Determination of the orientation of an integral membrane protein and sites of glycosylation by oligonucleotide-directed mutagenesis: influenza B virus NB glycoprotein lacks a cleavable signal sequence and has an extracellular NH2-terminal region , 1986, Molecular and cellular biology.

[53]  L. Grivell,et al.  Targeting efficiency of a mitochondrial pre‐sequence is dependent on the passenger protein. , 1986, The EMBO journal.

[54]  Gunnar von Heijne,et al.  Net N-C charge imbalance may be important for signal sequence function in bacteria , 1986 .

[55]  L. Tamm Incorporation of a synthetic mitochondrial signal peptide into charged and uncharged phospholipid monolayers. , 1986, Biochemistry.

[56]  T. Silhavy,et al.  Kinetic analysis of lamB mutants suggests the signal sequence plays multiple roles in protein export. , 1986, The Journal of biological chemistry.

[57]  J. Gordon,et al.  Deletion of the propeptide from human preproapolipoprotein A-II redirects cotranslational processing by signal peptidase. , 1986, The Journal of biological chemistry.

[58]  R A Laskey,et al.  Protein import into the cell nucleus. , 1986, Annual review of cell biology.

[59]  A. Dunn,et al.  Effect of deletions within the leader peptide of pre-ornithine transcarbamylase on mitochondrial import. , 1986, European journal of biochemistry.

[60]  G. Heijne The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans‐membrane topology , 1986, The EMBO journal.

[61]  K. Altendorf,et al.  Accessibility of F0 subunits from Escherichia coli ATP synthase. A study with subunit specific antisera. , 1986, European journal of biochemistry.

[62]  W. Wickner,et al.  The role of the polar, carboxyl-terminal domain of Escherichia coli leader peptidase in its translocation across the plasma membrane. , 1986, The Journal of biological chemistry.

[63]  H. Zuber,et al.  Structure of light-harvesting antenna complexes of photosynthetic bacteria, cyanobacteria and red algae , 1986 .

[64]  F. Jähnig,et al.  The structure of melittin in membranes. , 1986, Biophysical journal.

[65]  J. Sambrook,et al.  Analysis of progressive deletions of the transmembrane and cytoplasmic domains of influenza hemagglutinin , 1986, The Journal of cell biology.

[66]  G. Drews,et al.  Effect of uncoupler on assembly pathway for pigment-binding protein of bacterial photosynthetic membranes , 1986, Journal of bacteriology.

[67]  B. Dobberstein,et al.  The membrane-spanning segment of invariant chain (Iγ) contains a potentially cleavable signal sequence , 1986, Cell.

[68]  L. Randall,et al.  Correlation of competence for export with lack of tertiary structure of the mature species: A study in vivo of maltose-binding protein in E. coli , 1986, Cell.

[69]  J. Rochaix,et al.  A mitochondrial presequence can transport a chloroplast-encoded protein into yeast mitochondria. , 1986, The Journal of biological chemistry.

[70]  C. Arntzen,et al.  Evidence for two-step processing of nuclear-encoded chloroplast proteins during membrane assembly , 1986, The Journal of cell biology.

[71]  S W Hui,et al.  Structural analysis and amphiphilic properties of a chemically synthesized mitochondrial signal peptide. , 1986, The Journal of biological chemistry.

[72]  P. Weisbeek,et al.  The role of the transit peptide in the routing of precursors toward different chloroplast compartments , 1986, Cell.

[73]  Roger D. Kornberg,et al.  Synthetic peptides as nuclear localization signals , 1986, Nature.

[74]  A. Kuhn,et al.  The cytoplasmic carboxy terminus of M13 procoat is required for the membrane insertion of its central domain , 1986, Nature.

[75]  F. Jähnig,et al.  Models for the structure of outer-membrane proteins of Escherichia coli derived from raman spectroscopy and prediction methods. , 1986, Journal of molecular biology.

[76]  S. Munro,et al.  An hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein , 1986, Cell.

[77]  M. Eilers,et al.  Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria , 1986, Nature.

[78]  L. Gierasch,et al.  Conformations of signal peptides induced by lipids suggest initial steps in protein export. , 1986, Science.

[79]  D Botstein,et al.  Secretion-defective mutations in the signal sequence for Saccharomyces cerevisiae invertase , 1986, Molecular and cellular biology.

[80]  Susan Clark Bock,et al.  Idealization of the hydrophobic segment of the alkaline phosphatase signal peptide , 1986, Nature.

[81]  G. Heijne A new method for predicting signal sequence cleavage sites. , 1986 .

[82]  J. Richards,et al.  A chemically synthesized pre‐sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. , 1986, The EMBO journal.

[83]  G. Heijne Mitochondrial targeting sequences may form amphiphilic helices. , 1986 .

[84]  J. Rochaix,et al.  The cleavable pre‐sequence of an imported chloroplast protein directs attached polypeptides into yeast mitochondria , 1986, EMBO Journal.

[85]  P. Borst,et al.  How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes). , 1986, Biochimica et biophysica acta.

[86]  G. Heijne Towards a comparative anatomy of N-terminal topogenic protein sequences , 1986 .

[87]  T. Rapoport,et al.  The signal sequence of nascent preprolactin interacts with the 54K polypeptide of the signal recognition particle , 1986, Nature.

[88]  R M Macnab,et al.  Nucleotide sequence of the Escherichia coli motB gene and site-limited incorporation of its product into the cytoplasmic membrane , 1986, Journal of bacteriology.

[89]  G. Heijne Why mitochondria need a genome , 1986 .

[90]  B. de Kruijff,et al.  Studies on the lipid dependency and mechanism of the translocation of the mitochondrial precursor protein apocytochrome c across model membranes. , 1986, The Journal of biological chemistry.

[91]  G. Schatz,et al.  The presequences of two imported mitochondrial proteins contain information for intracellular and intramitochondrial sorting , 1986, Cell.

[92]  V. Bankaitis,et al.  Intragenic reversion mutations that improve export of maltose-binding protein in Escherichia coli malE signal sequence mutants. , 1986, The Journal of biological chemistry.

[93]  H. Matsubara,et al.  The N‐terminal 21 amino acids of a 70 kDa protein of the yeast mitochondrial outer membrane direct E. coli β‐galactosidase into the mitochondrial matrix space in yeast cells , 1986, FEBS letters.

[94]  H. C. Wu,et al.  Processing of Bacillus licheniformis penicillinases lacking a lipoprotein modification site in Escherichia coli , 1986, Journal of bacteriology.

[95]  A. Horwich,et al.  Targeting of pre-ornithine transcarbamylase to mitochondria: Definition of critical regions and residues in the leader peptide , 1986, Cell.

[96]  S. Inouye,et al.  Effect of amino acid substitutions at the signal peptide cleavage site of the Escherichia coli major outer membrane lipoprotein. , 1986, The Journal of biological chemistry.

[97]  L. Guarente,et al.  The nine amino-terminal residues of delta-aminolevulinate synthase direct beta-galactosidase into the mitochondrial matrix , 1986, Molecular and cellular biology.

[98]  W. Sebald,et al.  Nucleotide sequence and transcription of the fbc operon from Rhodopseudomonas sphaeroides. Evaluation of the deduced amino acid sequences of the FeS protein, cytochrome b and cytochrome c1. , 1986, European journal of biochemistry.

[99]  S. Emr,et al.  The amino terminus of the yeast F1-ATPase beta-subunit precursor functions as a mitochondrial import signal , 1986, The Journal of cell biology.

[100]  H. Lodish,et al.  An internal signal sequence: The asialoglycoprotein receptor membrane anchor , 1986, Cell.

[101]  W. Richardson,et al.  Nuclear location signals in polyoma virus large-T , 1986, Cell.

[102]  G. Karlin-Neumann,et al.  Transit peptides of nuclear‐encoded chloroplast proteins share a common amino acid framework. , 1986, EMBO Journal.

[103]  J. Knowles,et al.  Signal sequence mutants of beta-lactamase. , 1985, The Journal of biological chemistry.

[104]  R. Hodges,et al.  A synthetic signal peptide blocks import of precursor proteins destined for the mitochondrial inner membrane or matrix. , 1985, The Journal of biological chemistry.

[105]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[106]  A. Kuhn,et al.  Conserved residues of the leader peptide are essential for cleavage by leader peptidase. , 1985, The Journal of biological chemistry.

[107]  M. Uhlén,et al.  Analysis of signals for secretion in the staphylococcal protein A gene. , 1985, The EMBO journal.

[108]  U. Müller,et al.  The first twelve amino acids of a yeast mitochondrial outer membrane protein can direct a nuclear‐coded cytochrome oxidase subunit to the mitochondrial inner membrane. , 1985, The EMBO journal.

[109]  W. Neupert,et al.  Transport of proteins into mitochondria: a potassium diffusion potential is able to drive the import of ADP/ATP carrier. , 1985, The EMBO journal.

[110]  D. Oliver,et al.  Export defect adjacent to the processing site of staphylococcal nuclease is suppressed by a prlA mutation , 1985, Journal of bacteriology.

[111]  Masatoshi Inukai,et al.  Dual functions of the signal peptide in protein transfer across the membrane , 1985, Cell.

[112]  W. Neupert,et al.  Transport of proteins into mitochondria: Translocational intermediates spanning contact sites between outer and inner membranes , 1985, Cell.

[113]  H. Lodish,et al.  Multiple mechanisms of protein insertion into and across membranes. , 1985, Science.

[114]  P. Weisbeek,et al.  Sequence of the precursor of the chloroplast thylakoid lumen protein plastocyanin , 1985, Nature.

[115]  R. Ellis,et al.  Transport of proteins into chloroplasts. The effect of incorporation of amino acid analogues on the import and processing of chloroplast polypeptides. , 1985, European journal of biochemistry.

[116]  D. McGeoch,et al.  On the predictive recognition of signal peptide sequences. , 1985, Virus research.

[117]  S. Inouye,et al.  An alternate pathway for the processing of the prolipoprotein signal peptide in Escherichia coli. , 1985, The Journal of biological chemistry.

[118]  C. Schmidt,et al.  Studies of synthetic peptide analogs of the amphipathic helix. Structure of complexes with dimyristoyl phosphatidylcholine. , 1985, The Journal of biological chemistry.

[119]  D. Meyer Signal recognition particle (SRP) does not mediate a translational arrest of nascent secretory proteins in mammalian cell‐free systems. , 1985, The EMBO journal.

[120]  E. Hurt,et al.  The first twelve amino acids (less than half of the pre‐sequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix. , 1985, The EMBO journal.

[121]  G. von Heijne,et al.  Signal sequences: The limits of variation , 1985 .

[122]  H. Michel,et al.  The ‘heavy’ subunit of the photosynthetic reaction centre from Rhodopseudomonas viridis: isolation of the gene, nucleotide and amino acid sequence , 1985, The EMBO journal.

[123]  J. Sambrook,et al.  SV40 T antigen and the exocytotic pathway. , 1985, The EMBO journal.

[124]  P. Model,et al.  An artificial anchor domain: hydrophobicity suffices to stop transfer , 1985, Cell.

[125]  J. Rosenbusch,et al.  Folding patterns of porin and bacteriorhodopsin. , 1985, The EMBO journal.

[126]  L. Gierasch,et al.  In vivo function and membrane binding properties are correlated for Escherichia coli lamB signal peptides. , 1985, Science.

[127]  R. Schekman,et al.  Invertase signal and mature sequence substitutions that delay intercompartmental transport of active enzyme , 1985, The Journal of cell biology.

[128]  A. Horwich,et al.  A leader peptide is sufficient to direct mitochondrial import of a chimeric protein. , 1985, The EMBO journal.

[129]  K. Tagawa,et al.  Interaction with mitochondrial membranes of a synthetic peptide with a sequence common to extra peptides of mitochondrial precursor proteins. , 1985, Biochemical and biophysical research communications.

[130]  A. Pugsley,et al.  Export and secretion of proteins by bacteria , 1985 .

[131]  W. Wickner,et al.  Effects of two sec genes on protein assembly into the plasma membrane of Escherichia coli. , 1985, The Journal of biological chemistry.

[132]  J. Boeke,et al.  Fine structure of a membrane anchor domain. , 1985, Journal of molecular biology.

[133]  G. Cox,et al.  Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships , 1985, Journal of bacteriology.

[134]  U. Müller,et al.  A 70‐kd protein of the yeast mitochondrial outer membrane is targeted and anchored via its extreme amino terminus. , 1984, The EMBO journal.

[135]  E. Hurt,et al.  The amino‐terminal region of an imported mitochondrial precursor polypeptide can direct cytoplasmic dihydrofolate reductase into the mitochondrial matrix. , 1984, The EMBO journal.

[136]  G. Heijne Analysis of the distribution of charged residues in the N‐terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. , 1984, The EMBO journal.

[137]  J. Beckwith,et al.  The nucleotide sequence of the gene for malF protein, an inner membrane component of the maltose transport system of Escherichia coli. Repeated DNA sequences are found in the malE-malF intercistronic region. , 1984, The Journal of biological chemistry.

[138]  H. C. Wu,et al.  Modification and processing of Bacillus licheniformis prepenicillinase in Escherichia coli. Fate of mutant penicillinase lacking lipoprotein modification site. , 1984, The Journal of biological chemistry.

[139]  L. Grivell,et al.  The DNA sequence of the nuclear gene coding for the 17‐kd subunit VI of the yeast ubiquinol‐cytochrome c reductase: a protein with an extremely high content of acidic amino acids. , 1984, The EMBO journal.

[140]  V. Bankaitis,et al.  Intragenic suppressor mutations that restore export of maltose binding protein with a truncated signal peptide , 1984, Cell.

[141]  Gunnar von Heijne,et al.  How signal sequences maintain cleavage specificity. , 1984 .

[142]  D. Willey,et al.  Structure and topology of cytochrome f in pea chloroplast membranes , 1984, Cell.

[143]  S. Gasser,et al.  How mitochondria import proteins. , 1984, Biochimica et biophysica acta.

[144]  E. Kaiser,et al.  Amphiphilic secondary structure: design of peptide hormones. , 1984, Science.

[145]  S. Inouye,et al.  Requirement for signal peptide cleavage of Escherichia coli prolipoprotein. , 1983, Science.

[146]  D Perlman,et al.  A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. , 1983, Journal of molecular biology.

[147]  S. Inouye,et al.  Effects of the complete removal of basic amino acid residues from the signal peptide on secretion of lipoprotein in Escherichia coli. , 1983, The Journal of biological chemistry.

[148]  Gunnar von Heijne,et al.  Patterns of Amino Acids near Signal‐Sequence Cleavage Sites , 1983 .

[149]  M. Simon,et al.  Sensory transducers of E. coli are composed of discrete structural and functional domains , 1983, Cell.

[150]  S. Inouye,et al.  Prolipoprotein signal peptidase of Escherichia coli requires a cysteine residue at the cleavage site. , 1983, The EMBO journal.

[151]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[152]  F. Oesch,et al.  Studies on the biosynthesis of microsomal membrane proteins. Site of synthesis and mode of insertion of cytochrome b5, cytochrome b5 reductase, cytochrome P-450 reductase and epoxide hydrolase. , 1982, European journal of biochemistry.

[153]  G vonHeijne,et al.  Membrane proteins: the amino acid composition of membrane-penetrating segments. , 1981, European journal of biochemistry.

[154]  G. Hortin,et al.  Miscleavage at the presequence of rat preprolactin synthesized in pituitary cells incubated with a threonine analog , 1981, Cell.

[155]  T. Steitz,et al.  The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis , 1981, Cell.

[156]  J. Boeke,et al.  Processing of filamentous phage pre-coat protein. Effect of sequence variations near the signal peptidase cleavage site. , 1980, Journal of molecular biology.

[157]  E. Davie,et al.  Biosynthesis of bovine plasma proteins in a cell-free system. Amino-terminal sequence of preproalbumin. , 1979, European journal of biochemistry.

[158]  T. Rapoport,et al.  A signal sequence receptor in the endoplasmic reticulum membrane , 1987, Nature.

[159]  K. von Figura,et al.  Lysosomal enzymes and their receptors. , 1986, Annual review of biochemistry.

[160]  T. Rapoport Protein translocation across and integration into membranes. , 1986, CRC critical reviews in biochemistry.

[161]  Y. Fujiki,et al.  Biogenesis of peroxisomes. , 1985, Annual review of cell biology.

[162]  H. Mihara,et al.  Effects of synthetic model peptides resembling the extension peptides of mitochondrial enzyme precursors on import of the precursors into mitochondria. , 1985, Journal of biochemistry.

[163]  D. Oliver Protein secretion in Escherichia coli. , 1985, Annual review of microbiology.

[164]  G. Heijne Chapter 4 Structural and Thermodynamic Aspects of the Transfer of Proteins into and across Membranes , 1985 .

[165]  D. Clayton Transcription of the mammalian mitochondrial genome. , 1984, Annual review of biochemistry.

[166]  D. Eisenberg Three-dimensional structure of membrane and surface proteins. , 1984, Annual review of biochemistry.

[167]  M. Inouye,et al.  The outer membrane proteins of Gram-negative bacteria: biosynthesis, assembly, and functions. , 1978, Annual review of biochemistry.