Resource Assessment Techniques for Continuous Cover Forestry

From a statistical point of view continuous cover forestry (CCF) systems are heterogeneous populations, whose attributes show high variability and diversity. While information needs for homogeneous, even-aged, single species stands can easily be satisfied by providing information on statistical key parameters, CCF systems render information on spatial patterns and forest structures necessary. Beside statistical point estimates information on the distribution of attributes is crucial for managing CCF systems and describing their ecological condition. This paper summarizes selected methodologies that recently have promoted the assessment of CCF systems. Special emphasis is given to information needs, terrestrial surveys, remote sensing techniques, mapped information and change estimation.

[1]  Knut Conradsen,et al.  Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies , 1998 .

[2]  B. Michael,et al.  Monitoring Forest Carbon Stocks and Fluxes in the Congo Basin , 2010 .

[3]  N. Pfeifer,et al.  Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees , 2004 .

[4]  F. Wagner,et al.  Good Practice Guidance for Land Use, Land-Use Change and Forestry , 2003 .

[5]  S. Magnussen,et al.  Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory , 2006 .

[6]  Hans-Gerd Maas,et al.  Automatic forest inventory parameter determination from terrestrial laser scanner data , 2008 .

[7]  Wolfgang Stümer,et al.  Spatial interpolation of in situ data by self-organizing map algorithms (neural networks) for the assessment of carbon stocks in European forests , 2010 .

[8]  Erkki Tomppo,et al.  Model-based prediction error uncertainty estimation for k-nn method , 2006 .

[9]  M. Canty Image Analysis, Classification, and Change Detection in Remote Sensing , 2006 .

[10]  Barbara Koch,et al.  Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment , 2010 .

[11]  T. Vrška,et al.  Local variability of stand structural features in beech dominated natural forests of Central Europe: Implications for sampling , 2010 .

[12]  M. Bauer,et al.  Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method , 2001 .

[13]  M. Nilsson Estimation of forest variables using satellite image data and airborne Lidar , 1997 .

[14]  C. Hopkinson,et al.  Assessing forest metrics with a ground-based scanning lidar , 2004 .

[15]  A. Franc Some Mathematical Remarks on Forest Biodiversity , 1998 .

[16]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[17]  Steen Magnussen,et al.  Estimating sample size for inference about the Shannon-Weaver and the Simpson Indices of species diversity , 1995 .

[18]  T. Crow,et al.  Report on the scientific roundtable on biological diversity convened by the Chequamegon and Nicolet National Forests. Forest Service general technical report , 1994 .

[19]  Ross Nelson,et al.  Exploring LiDAR–RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR , 2007 .

[20]  Rachel Gaulton,et al.  LiDAR mapping of canopy gaps in continuous cover forests: A comparison of canopy height model and point cloud based techniques , 2010 .

[21]  David J. Harding,et al.  A portable LIDAR system for rapid determination of forest canopy structure , 2004 .

[22]  A. Magurran Ecological Diversity and Its Measurement , 1988, Springer Netherlands.

[23]  Glen Murphy,et al.  Tree value and log product yield determination in radiata pine (Pinus radiata) plantations in Australia: comparisons of terrestrial laser scanning with a forest inventory system and manual measurements , 2010 .

[24]  J. Gál,et al.  Error assessment for a provincial timber inventory , 1995 .

[25]  Ronald E. McRoberts,et al.  Variation in forest inventory field measurements , 1994 .

[26]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[27]  Andrew N. Gray,et al.  Monitoring stand structure in mature coastal Douglas-fir forests: effect of plot size , 2003 .

[28]  C. Goulding,et al.  Adapting Finnish Multi-Source Forest Inventory Techniques to the New Zealand Preharvest Inventory , 1999 .

[29]  Y. Hu,et al.  Mapping the height and above‐ground biomass of a mixed forest using lidar and stereo Ikonos images , 2008 .

[30]  L. A. Goodman Simultaneous Confidence Intervals for Contrasts Among Multinomial Populations , 1964 .

[31]  P. Patterson,et al.  Measurement variability error for estimates of volume change , 2007 .

[32]  J. Hyyppä,et al.  Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes , 2000 .

[33]  Annika Kangas,et al.  Effect of errors-in-variables on coefficients of a growth model and on prediction of growth , 1998 .

[34]  James A. Westfall,et al.  Measurement repeatability of a large-scale inventory of forest fuels , 2007 .

[35]  P. Corona Integration of forest mapping and inventory to support forest management , 2010 .

[36]  P. Holmgren,et al.  Satellite remote sensing for forestry planning—A review , 1998 .

[37]  H. Biolley L'aménagement des forêts par la méthode expérimentale et spécialement la méthode du controle , 1920 .

[38]  H. Biolley L'aménagement des forêts par la méthode expérimentale et spécialement la méthode du contrôle. Avec und lettre-préface de Roger Ducamp. , 2022 .

[39]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[40]  Andrew O. Finley,et al.  Efficient k-nearest neighbor searches for multi-source forest attribute mapping , 2008 .

[41]  Zhonghua Zhao,et al.  Evaluating Tree Species Spatial Diversity Based on Neighborhood Relationships , 2011 .

[42]  M. Koehl,et al.  State of Europe's Forests 2007: The MCPFE Report on Sustainable Forest Management in Europe , 2007 .

[43]  Eric S. Kasischke,et al.  Observations on the sensitivity of ERS-1 SAR image intensity to changes in aboveground biomass in young loblolly pine forests , 1994 .

[44]  Daniel Mandallaz,et al.  Estimation of the spatial covariance in Universal Kriging: Application to forest inventory , 2000, Environmental and Ecological Statistics.

[45]  D. C. Hurst,et al.  Large Sample Simultaneous Confidence Intervals for Multinomial Proportions , 1964 .

[46]  Francis A. Roesch Adaptive Cluster Sampling for Forest Inventories , 1993, Forest Science.

[47]  J. C. Nautiyal,et al.  Forest variability index: a vector quantifying forest stand diversity and forest compactness , 2004 .

[48]  J. Nyblom,et al.  Estimating forest attributes using observations of canopy height: a model-based approach. , 2009 .

[49]  Steen Magnussen,et al.  Recovering Tree Heights from Airborne Laser Scanner Data , 1999, Forest Science.

[50]  C. Bickford A test of continuous inventory for National Forest management based upon aerial photographs, double sampling and remeasured plots. , 1960 .

[51]  N. Coops,et al.  Assessment of standing wood and fiber quality using ground and airborne laser scanning: A review , 2011 .

[52]  Markus Neumann,et al.  The significance of different indices for stand structure and diversity in forests , 2001 .

[53]  H. Lund,et al.  The United States forest inventory program. , 1997 .

[54]  Erkki Tomppo,et al.  Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: a genetic algorithm approach , 2004 .

[55]  Jeremiah P. Banda Nonsampling errors in surveys , 2003 .

[56]  Jari Vauhkonen,et al.  Estimating crown base height for Scots pine by means of the 3D geometry of airborne laser scanning data , 2010 .

[57]  Steven K. Thompson,et al.  Adaptive Cluster Sampling , 1990 .

[58]  Risto Päivinen,et al.  Assessment of Biodiversity for Improved Forest Planning , 1998, Forestry Sciences.

[59]  O. Edenhofer,et al.  Intergovernmental Panel on Climate Change (IPCC) , 2013 .

[60]  Geoff Smith,et al.  The characterisation and measurement of land cover change through remote sensing: problems in operational applications? , 2003 .

[61]  Peter Bunting,et al.  Retrieving forest biomass through integration of CASI and LiDAR data , 2008 .

[62]  A. Fielding,et al.  Non‐Sampling Errors in Surveys , 1995 .

[63]  S. Magnussen,et al.  Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories , 2009 .

[64]  Hans Pretzsch,et al.  Using terrestrial laser scanner for estimating leaf areas of individual trees in a conifer forest , 2010, Trees.

[65]  D. Leckie,et al.  Automated tree recognition in old growth conifer stands with high resolution digital imagery , 2005 .

[66]  L. A. Goodman On Simultaneous Confidence Intervals for Multinomial Proportions , 1965 .

[67]  S. Popescu,et al.  Lidar remote sensing of forest biomass : A scale-invariant estimation approach using airborne lasers , 2009 .

[68]  Wolfram Gleichmar,et al.  Indizes zur Charakterisierung der horizontalen Baumverteilung , 1998, Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch.

[69]  T. Pukkala,et al.  Designing forested landscapes to provide multiple services , 2007 .

[70]  Piermaria Corona,et al.  Design-based approach to k-nearest neighbours technique for coupling field and remotely sensed data in forest surveys , 2009 .

[71]  F. M. Danson,et al.  Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .

[72]  E. Wald,et al.  Schweizerisches Landesforstinventar : Ergebnisse der Zweitaufnahme 1993-1995 , 1999 .

[73]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[74]  Felix Morsdorf,et al.  Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling , 2009 .

[75]  Kombination von terrestrischen Aufnahmen und Fernerkundungsdaten mit Hilfe der kNN-Methode zur Klassifizierung und Kartierung von Wäldern , 2004 .

[76]  Rupert G. Miller Simultaneous Statistical Inference , 1966 .

[77]  Alexandre Carleer,et al.  Exploitation of Very High Resolution Satellite Data for Tree Species Identification , 2004 .

[78]  Åsa Persson,et al.  Detecting and measuring individual trees using an airborne laser scanner , 2002 .

[79]  J. Hyyppä,et al.  Tree species classification using airborne LiDAR - effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type , 2010 .

[80]  George Z. Gertner,et al.  An assessment of some nonsampling errors in a national survey using an error budget , 1992 .

[81]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[82]  M. Honzak,et al.  Tropical Forest Biomass Density Estimation Using JERS-1 SAR: Seasonal Variation, Confidence Limits, and Application to Image Mosaics , 1998 .