Explicit model predictive controller under uncertainty: An adjustable robust optimization approach

Abstract Conventional model predictive control (MPC) involves solving an optimization problem online to determine the control actions that minimize a performance criterion function. The high computational expense associated with conventional MPC may make its application challenging for large-scale systems. Explicit MPC has been developed to solve the optimization problem offline. In this work, adjustable robust optimization is used to obtain the explicit solution to the MPC optimization problem offline for discrete-time linear time invariant systems with constraints on inputs and states. In the robust model formulation, an uncertain additive time-varying error is introduced to account for model uncertainty resulting from plant-model mismatch caused by un-measurable disturbances or process nonlinearities. The explicit solution is an optimal time-varying sequence of feedback control laws for the control inputs parameterized by the system’s states. The control laws are evaluated in a time-varying manner when the process is online using state measurements. This study shows that the resulting control laws ensure the implemented control actions maintain the system states within their feasible region for any realizations of the uncertain parameters that are within the user-defined uncertainty set. Three case studies are presented to demonstrate the proposed approach and to highlight the benefits and limitations of this method. The proposed framework advances the development of Explicit MPC by further expanding its application to large as well as nonlinear systems.

[1]  Tor Arne Johansen,et al.  Approximate explicit receding horizon control of constrained nonlinear systems , 2004, Autom..

[2]  Efstratios N. Pistikopoulos,et al.  Simultaneous Multi-Parametric Model Predictive Control and State Estimation with Application to Distillation Column and Intravenous Anaesthesia , 2014 .

[3]  Shabnam Rasoulian,et al.  Stochastic nonlinear model predictive control applied to a thin film deposition process under uncertainty , 2016 .

[4]  Jing Zhang,et al.  Robust moving horizon estimation based output feedback economic model predictive control , 2014, Syst. Control. Lett..

[5]  Efstratios N. Pistikopoulos,et al.  Algorithm for robust explicit/multi-parametric MPC in embedded control systems , 2011 .

[6]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[7]  Luis A. Ricardez-Sandoval,et al.  Stochastic Back-Off Approach for Integration of Design and Control Under Uncertainty , 2018 .

[8]  J.T. Gravdahl,et al.  MPC for Large-Scale Systems via Model Reduction and Multiparametric Quadratic Programming , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[9]  Tor Arne Johansen,et al.  Computation, approximation and stability of explicit feedback min-max nonlinear model predictive control , 2009, Autom..

[10]  Bernardo Morcego,et al.  Distributed MPC for large scale systems using agent-based reinforcement learning , 2010 .

[11]  Xunyuan Yin,et al.  Subsystem decomposition and distributed moving horizon estimation of wastewater treatment plants , 2018, Chemical Engineering Research and Design.

[12]  Xunyuan Yin,et al.  Subsystem decomposition of process networks for simultaneous distributed state estimation and control , 2018, AIChE Journal.

[13]  Manfred Morari,et al.  Polytopic Approximation of Explicit Model Predictive Controllers , 2010, IEEE Transactions on Automatic Control.

[14]  Manfred Morari,et al.  Multiparametric Linear Programming with Applications to Control , 2007, Eur. J. Control.

[15]  Xin Chen,et al.  Uncertain Linear Programs: Extended Affinely Adjustable Robust Counterparts , 2009, Oper. Res..

[16]  Shabnam Rasoulian,et al.  Distributional uncertainty analysis and robust optimization in spatially heterogeneous multiscale process systems , 2016 .

[17]  Chrysanthos E. Gounaris,et al.  Multi‐stage adjustable robust optimization for process scheduling under uncertainty , 2016 .

[18]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[19]  Efstratios N. Pistikopoulos,et al.  Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems , 2011 .

[20]  Chrysanthos E. Gounaris,et al.  Theoretical and computational comparison of continuous‐time process scheduling models for adjustable robust optimization , 2018 .

[21]  Daniel Kuhn,et al.  Primal and dual linear decision rules in stochastic and robust optimization , 2011, Math. Program..

[22]  Manfred Morari,et al.  A Multiresolution Approximation Method for Fast Explicit Model Predictive Control , 2011, IEEE Transactions on Automatic Control.

[23]  Zhijiang Shao,et al.  Robust extensions for reduced-space barrier NLP algorithms , 2011, Comput. Chem. Eng..

[24]  Michael C. Georgiadis,et al.  Modelling and explicit model predictive control for PEM fuel cell systems , 2012 .

[25]  Lorenzo Fagiano,et al.  Set Membership approximation theory for fast implementation of Model Predictive Control laws , 2009, Autom..

[26]  Sebastian Engell,et al.  Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty , 2013 .

[27]  Marko Bacic,et al.  Model predictive control , 2003 .

[28]  Alberto Bemporad,et al.  Robust explicit MPC based on approximate multiparametric convex programming , 2004, IEEE Transactions on Automatic Control.

[29]  Dick den Hertog,et al.  A practical guide to robust optimization , 2015, 1501.02634.

[30]  Peter L. Douglas,et al.  Simultaneous design and control of processes under uncertainty: A robust modelling approach , 2008 .

[31]  Helen Durand,et al.  Real‐time preventive sensor maintenance using robust moving horizon estimation and economic model predictive control , 2015 .

[32]  A. Mesbah,et al.  Stochastic Model Predictive Control: An Overview and Perspectives for Future Research , 2016, IEEE Control Systems.

[33]  Christos T. Maravelias,et al.  Economic MPC and real-time decision making with application to large-scale HVAC energy systems , 2017, Comput. Chem. Eng..

[34]  Luis F. Domínguez,et al.  Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control , 2011 .

[35]  Jochen Steimel,et al.  Optimization‐based support for process design under uncertainty: A case study , 2016 .

[36]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[37]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[38]  Vu C. Dinh,et al.  Support Vector Machine Informed Explicit Nonlinear Model Predictive Control Using Low-Discrepancy Sequences , 2017, IEEE Transactions on Automatic Control.

[39]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[40]  J. Maciejowski,et al.  Feedback min‐max model predictive control using a single linear program: robust stability and the explicit solution , 2004 .

[41]  Luis A. Ricardez-Sandoval,et al.  Stochastic back‐off algorithm for simultaneous design, control, and scheduling of multiproduct systems under uncertainty , 2018 .

[42]  Alberto Bemporad,et al.  A survey on explicit model predictive control , 2009 .

[43]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[44]  Eric C. Kerrigan,et al.  Optimization over state feedback policies for robust control with constraints , 2006, Autom..

[45]  Dimitris Bertsimas,et al.  Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization , 2015, Oper. Res..

[46]  Daniel Sarabia,et al.  Improving scenario decomposition algorithms for robust nonlinear model predictive control , 2015, Comput. Chem. Eng..

[47]  Alberto Bemporad,et al.  An Algorithm for Approximate Multiparametric Convex Programming , 2006, Comput. Optim. Appl..

[48]  Panagiotis D. Christofides,et al.  Distributed model predictive control: A tutorial review and future research directions , 2013, Comput. Chem. Eng..

[49]  Efstratios N. Pistikopoulos,et al.  Advanced control strategies for the multicolumn countercurrent solvent gradient purification process , 2016 .

[50]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[51]  Thomas Parisini,et al.  Approximate model predictive control laws for constrained nonlinear discrete-time systems: analysis and offline design , 2013, Int. J. Control.

[52]  Efstratios N. Pistikopoulos,et al.  An algorithm for robust explicit/multi-parametric model predictive control , 2013, Autom..

[53]  Efstratios N. Pistikopoulos,et al.  Explicit Robust Model Predictive Control , 2009 .

[54]  Sebastian Engell,et al.  Towards dual robust nonlinear model predictive control: A multi-stage approach , 2015, 2015 American Control Conference (ACC).

[55]  A. Bemporad,et al.  Suboptimal Explicit Receding Horizon Control via Approximate Multiparametric Quadratic Programming , 2003 .

[56]  Luis A. Ricardez-Sandoval,et al.  Robust dynamic optimization in heterogeneous multiscale catalytic flow reactors using polynomial chaos expansion , 2017 .

[57]  Tor Arne Johansen,et al.  Approximate explicit constrained linear model predictive control via orthogonal search tree , 2003, IEEE Trans. Autom. Control..

[58]  Xianzhong Chen,et al.  Model predictive control of nonlinear singularly perturbed systems: Application to a large-scale process network , 2011 .

[59]  Efstratios N. Pistikopoulos,et al.  Design of robust model-based controllers via parametric programming , 2004, Autom..

[60]  Jay H. Lee,et al.  Model predictive control: Review of the three decades of development , 2011 .