Contrast sensitivity reveals an oculomotor strategy for temporally encoding space

The contrast sensitivity function (CSF), how sensitivity varies with the spatial frequency of the stimulus, is a fundamental assessment of visual performance. The CSF is generally assumed to be determined by low-level sensory processes. However, the sensitivities of neurons in the early visual pathways, as measured in experiments with immobilized eyes, diverge from psychophysical CSF measurements in primates. Under natural viewing conditions, as in typical psychophysical measurements, humans continually move their eyes, drifting in a seemingly erratic manner even when looking at a fixed point. Here, we show that the resulting transformation of the visual scene into a spatiotemporal flow on the retina constitutes a processing stage that reconciles human CSF and the response characteristics of retinal ganglion cells under a broad range of conditions. Our findings suggest a fundamental integration between perception and action: eye movements work synergistically with the sensitivities of retinal neurons to encode spatial information.

[1]  D. Burr,et al.  Temporal Coding of Visual Space , 2018, Trends in Cognitive Sciences.

[2]  Zhuoyi Song,et al.  Microsaccadic sampling of moving image information provides Drosophila hyperacute vision , 2017, bioRxiv.

[3]  Marco Boi,et al.  Consequences of the Oculomotor Cycle for the Dynamics of Perception , 2017, Current Biology.

[4]  Austin Roorda,et al.  Benefits of retinal image motion at the limits of spatial vision , 2017, Journal of vision.

[5]  Roger C. Hardie,et al.  Microsaccadic information sampling provides Drosophila hyperacute vision , 2016 .

[6]  Bruce G Cumming,et al.  Variability and Correlations in Primary Visual Cortical Neurons Driven by Fixational Eye Movements , 2016, The Journal of Neuroscience.

[7]  Martina Poletti,et al.  Eye movements between saccades: Measuring ocular drift and tremor , 2016, Vision Research.

[8]  Naghmeh Mostofi,et al.  Are the visual transients from microsaccades helpful? Measuring the influences of small saccades on contrast sensitivity , 2016, Vision Research.

[9]  Martina Poletti,et al.  Head-Eye Coordination at a Microscopic Scale , 2015, Current Biology.

[10]  Martina Poletti,et al.  Control and Functions of Fixational Eye Movements. , 2015, Annual review of vision science.

[11]  Henry J. Alitto,et al.  Surround suppression and temporal processing of visual signals. , 2015, Journal of neurophysiology.

[12]  J. Victor,et al.  The unsteady eye: an information-processing stage, not a bug , 2015, Trends in Neurosciences.

[13]  Bruno Weber,et al.  How doth the little busy bee: unexpected metabolism , 2015, Trends in Neurosciences.

[14]  Michele Rucci,et al.  Decorrelation of retinal response to natural scenes by fixational eye movements , 2013, Proceedings of the National Academy of Sciences.

[15]  Tilo Kircher,et al.  Eye movements of patients with schizophrenia in a natural environment , 2014, European Archives of Psychiatry and Clinical Neuroscience.

[16]  Michele Rucci,et al.  The Visual Input to the Retina during Natural Head-Free Fixation , 2014, The Journal of Neuroscience.

[17]  Robin Walker,et al.  Reading with peripheral vision: A comparison of reading dynamic scrolling and static text with a simulated central scotoma , 2014, Vision Research.

[18]  P. Maldonado,et al.  Small Saccades and Image Complexity during Free Viewing of Natural Images in Schizophrenia , 2013, Front. Psychiatry.

[19]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[20]  Velitchko Manahilov,et al.  Visual Psychophysics and Physiological Optics Image Jitter Enhances Visual Performance When Spatial Resolution Is Impaired , 2012 .

[21]  M. Rucci,et al.  Precision of sustained fixation in trained and untrained observers. , 2012, Journal of vision.

[22]  J. Victor,et al.  Temporal Encoding of Spatial Information during Active Visual Fixation , 2012, Current Biology.

[23]  Hamutal Slovin,et al.  Spatiotemporal effects of microsaccades on population activity in the visual cortex of monkeys during fixation. , 2012, Cerebral cortex.

[24]  Eileen Kowler Eye movements: The past 25years , 2011, Vision Research.

[25]  E. Rossi,et al.  The relationship between visual resolution and cone spacing in the human fovea , 2009, Nature Neuroscience.

[26]  A. Casile,et al.  A theory of the influence of eye movements on the refinement of direction selectivity in the cat's primary visual cortex , 2009, Network.

[27]  D. Snodderly,et al.  Saccades and drifts differentially modulate neuronal activity in V1: effects of retinal image motion, position, and extraretinal influences. , 2008, Journal of vision.

[28]  P. Thier,et al.  The subjective visual vertical in a nonhuman primate. , 2008, Journal of vision.

[29]  D. Snodderly,et al.  Saccades and drifts differentially modulate neuronal activity in V 1 : Effects of retinal image motion , position , 2008 .

[30]  Michele Rucci,et al.  EyeRIS: A general-purpose system for eye-movement-contingent display control , 2007, Behavior research methods.

[31]  Martina Poletti,et al.  Miniature eye movements enhance fine spatial detail , 2007, Nature.

[32]  Daniel C. Javitt,et al.  Reading impairment and visual processing deficits in schizophrenia , 2006, Schizophrenia Research.

[33]  Antonino Casile,et al.  A Theoretical Analysis of the Influence of Fixational Instability on the Development of Thalamocortical Connectivity , 2006, Neural Computation.

[34]  Daniel C. Javitt,et al.  Magnocellular contributions to impaired motion processing in schizophrenia , 2006, Schizophrenia Research.

[35]  Michael J. Berry,et al.  Redundancy in the Population Code of the Retina , 2005, Neuron.

[36]  Jörgen Gustafsson,et al.  The MoviText method: Efficient pre-optical reading training in persons with central visual field loss , 2004 .

[37]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[38]  Cynthia Owsley Contrast sensitivity. , 2003, Ophthalmology clinics of North America.

[39]  C. Li Impaired detection of visual motion in schizophrenia patients , 2002, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[40]  Markus Bongard,et al.  Retinal ganglion cell synchronization by fixational eye movements improves feature estimation , 2002, Nature Neuroscience.

[41]  C. Schroeder,et al.  Dysfunction of early-stage visual processing in schizophrenia. , 2001, The American journal of psychiatry.

[42]  R. Born,et al.  Segregation of Object and Background Motion in Visual Area MT Effects of Microstimulation on Eye Movements , 2000, Neuron.

[43]  Leslie G. Ungerleider,et al.  Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys , 2000, Nature Neuroscience.

[44]  E. Kaplan,et al.  The dynamics of primate M retinal ganglion cells , 1999, Visual Neuroscience.

[45]  Nikos K. Logothetis,et al.  Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex , 1998, Experimental Brain Research.

[46]  W. Slaghuis,et al.  Contrast sensitivity for stationary and drifting spatial frequency gratings in positive- and negative-symptom schizophrenia. , 1998, Journal of abnormal psychology.

[47]  D. Snodderly,et al.  Response Variability of Neurons in Primary Visual Cortex (V1) of Alert Monkeys , 1997, The Journal of Neuroscience.

[48]  E. Kaplan,et al.  The receptive field of the primate P retinal ganglion cell, II: Nonlinear dynamics , 1997, Visual Neuroscience.

[49]  E. Kaplan,et al.  The receptive field of the primate P retinal ganglion cell, I: Linear dynamics , 1997, Visual Neuroscience.

[50]  Guinevere F. Eden,et al.  The Visual Deficit Theory of Developmental Dyslexia , 1996, NeuroImage.

[51]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[52]  M. S. Fowler,et al.  Unstable Binocular Control in Dyslexic Children. , 1993 .

[53]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[54]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[55]  R. Shapley,et al.  Light adaptation in the primate retina: Analysis of changes in gain and dynamics of monkey retinal ganglion cells , 1990, Visual Neuroscience.

[56]  W. H. Miller,et al.  Does cone positional disorder limit resolution? , 1987, Journal of the Optical Society of America. A, Optics and image science.

[57]  J. Victor The dynamics of the cat retinal X cell centre. , 1987, The Journal of physiology.

[58]  H D Crane,et al.  Generation-V dual-Purkinje-image eyetracker. , 1985, Applied optics.

[59]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[60]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[61]  D. O. Bowker,et al.  Sensitivity to countermodulating gratings following spatiotemporal adaptation. , 1983, Journal of the Optical Society of America.

[62]  Trichur Raman Vidyasagar,et al.  The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings. , 1983, The Journal of physiology.

[63]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[64]  J. Stein,et al.  Visual dyslexia , 1981, Trends in Neurosciences.

[65]  W. Lovegrove,et al.  Reading disability: Spatial frequency specific deficits in visual information store , 1980, Neuropsychologia.

[66]  D. Badcock,et al.  Specific reading disability: differences in contrast sensitivity as a function of spatial frequency. , 1980, Science.

[67]  D H Kelly,et al.  Motion and vision. I. Stabilized images of stationary gratings. , 1979, Journal of the Optical Society of America.

[68]  J. Thorson,et al.  Distributed Relaxation Processes in Sensory Adaptation , 1974, Science.

[69]  R. L. de Valois,et al.  Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. , 1974, Vision research.

[70]  A. A. Skavenski,et al.  Miniature eye movement. , 1973, Science.

[71]  R. M. Boynton,et al.  Visual Adaptation in Monkey Cones: Recordings of Late Receptor Potentials , 1970, Science.

[72]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[73]  M. M. Taylor,et al.  PEST: Efficient Estimates on Probability Functions , 1967 .

[74]  J. Robson Spatial and Temporal Contrast-Sensitivity Functions of the Visual System , 1966 .

[75]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[76]  L. Riggs,et al.  The disappearance of steadily fixated visual test objects. , 1953, Journal of the Optical Society of America.

[77]  L. Riggs,et al.  Involuntary motions of the eye during monocular fixation. , 1950, Journal of experimental psychology.