Very large release of mostly volcanic carbon during the Paleocene-Eocene Thermal Maximum

[1]  Atul K. Jain,et al.  Global Carbon Budget 2019 , 2019, Earth System Science Data.

[2]  G. Foster,et al.  A new boron isotope-pH calibration for Orbulina universa, with implications for understanding and accounting for ‘vital effects’ , 2016 .

[3]  J. Wright,et al.  Impact ejecta at the Paleocene-Eocene boundary , 2016, Science.

[4]  J. Zachos,et al.  An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene-Eocene thermal maximum , 2016 .

[5]  G. Foster,et al.  Reconstructing Ocean pH with Boron Isotopes in Foraminifera , 2016 .

[6]  P. Pearson,et al.  Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate , 2016, Nature.

[7]  A. Ridgwell,et al.  Development of a novel empirical framework for interpreting geological carbon isotope excursions, with implications for the rate of carbon injection across the PETM , 2016 .

[8]  D. Lunt,et al.  An impulse response function for the “long tail” of excess atmospheric CO2 in an Earth system model , 2016 .

[9]  S. Planke,et al.  Thermogenic methane release as a cause for the long duration of the PETM , 2016, Proceedings of the National Academy of Sciences.

[10]  J. Zachos,et al.  Anthropogenic carbon release rate unprecedented during the past 66 million years , 2015 .

[11]  D. Lunt,et al.  The ‘long tail’ of anthropogenic CO2 decline in the atmosphere and its consequences for post-closure performance assessments for disposal of radioactive wastes , 2015, Mineralogical Magazine.

[12]  L. Kump,et al.  Global warming and the end-Permian extinction event: Proxy and modeling perspectives , 2015 .

[13]  A. Saunders Two LIPs and two Earth-system crises: the impact of the North Atlantic Igneous Province and the Siberian Traps on the Earth-surface carbon cycle , 2015, Geological Magazine.

[14]  T. Lenton,et al.  The time scale of the silicate weathering negative feedback on atmospheric CO2 , 2015 .

[15]  P. Ziveri,et al.  Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation , 2015, Nature.

[16]  R. Norris,et al.  Persistence of carbon release events through the peak of early Eocene global warmth , 2014 .

[17]  P. Pearson,et al.  Drilling disturbance and constraints on the onset of the Paleocene–Eocene boundary carbon isotope excursion in New Jersey , 2014 .

[18]  K. Farley,et al.  Persistent environmental change after the Paleocene–Eocene Thermal Maximum in the eastern North Atlantic , 2014 .

[19]  J. Zachos,et al.  Carbon sequestration during the Palaeocene-Eocene Thermal Maximum by an efficient biological pump , 2014 .

[20]  J. Zachos,et al.  Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum , 2014 .

[21]  J. Wright,et al.  Reply to Pearson and Nicholas, Stassen et al., and Zeebe et al.: Teasing out the missing piece of the PETM puzzle , 2014, Proceedings of the National Academy of Sciences.

[22]  Ellen Thomas,et al.  Unsettled puzzle of the Marlboro clays , 2014, Proceedings of the National Academy of Sciences.

[23]  G. Dickens,et al.  Onset of carbon isotope excursion at the Paleocene-Eocene thermal maximum took millennia, not 13 years , 2014, Proceedings of the National Academy of Sciences.

[24]  P. Pearson,et al.  Layering in the Paleocene/Eocene boundary of the Millville core is drilling disturbance , 2014, Proceedings of the National Academy of Sciences.

[25]  A. Vengosh,et al.  Interlaboratory Comparison of Boron Isotope Analyses of Boric Acid, Seawater and Marine CaCO3 by MC-ICPMS and NTIMS , 2013 .

[26]  L. Kump,et al.  Geochemical evidence for volcanic activity prior to and enhanced terrestrial weathering during the Paleocene Eocene Thermal Maximum , 2013 .

[27]  G. Pagnoni,et al.  The potential failure of Monte Nuovo at Ischia Island (Southern Italy): numerical assessment of a likely induced tsunami and its effects on a densely inhabited area , 2013, Bulletin of Volcanology.

[28]  M. Maslin,et al.  Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum , 2013 .

[29]  J. Wright,et al.  Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum , 2013, Proceedings of the National Academy of Sciences.

[30]  B. Schubert,et al.  Reconciliation of marine and terrestrial carbon isotope excursions based on changing atmospheric CO2 levels , 2013, Nature Communications.

[31]  M. Kučera,et al.  Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction , 2013 .

[32]  M. Rampino Peraluminous igneous rocks as an indicator of thermogenic methane release from the North Atlantic Volcanic Province at the time of the Paleocene–Eocene Thermal Maximum (PETM) , 2013, Bulletin of Volcanology.

[33]  W. Müller,et al.  Deep time foraminifera Mg/Ca paleothermometry: Nonlinear correction for secular change in seawater Mg/Ca , 2012 .

[34]  Eelco J. Rohling,et al.  Making sense of palaeoclimate sensitivity , 2012, Nature.

[35]  A. Coe,et al.  Seawater oxygenation during the Paleocene-Eocene Thermal Maximum , 2012 .

[36]  R. DeConto,et al.  Past extreme warming events linked to massive carbon release from thawing permafrost , 2012, Nature.

[37]  Stephen Barker,et al.  The Geological Record of Ocean Acidification , 2011, Science.

[38]  N. Urban,et al.  Slow release of fossil carbon during the Palaeocene-Eocene Thermal Maximum , 2011 .

[39]  J. Marshall,et al.  Constraints on the numerical age of the Paleocene‐Eocene boundary , 2011 .

[40]  F. A. McInerney,et al.  The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future , 2011 .

[41]  J. Zachos,et al.  Rapid carbon sequestration at the termination of the Palaeocene-Eocene Thermal Maximum , 2010 .

[42]  A. Paytan,et al.  Calcium isotope constraints on the end-Permian mass extinction , 2010, Proceedings of the National Academy of Sciences.

[43]  S. Planke,et al.  Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming , 2010, Journal of the Geological Society.

[44]  P. Valdes,et al.  Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean–atmosphere GCM: Implications for reconstructing early Eocene climate , 2010 .

[45]  A. Ridgwell,et al.  Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release , 2010 .

[46]  G. Dickens,et al.  Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming , 2009 .

[47]  F. Joos,et al.  The role of ocean transport in the uptake of anthropogenic CO2 , 2009 .

[48]  G. Foster Erratum to “Seawater pH, pCO2 and [CO32−] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera” (doi: 10.1016/j.epsl.2008.04.015) , 2009 .

[49]  G. Foster Seawater pH, pCO2 and [CO2−3] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera , 2008 .

[50]  J. Zachos,et al.  On the duration of the Paleocene‐Eocene thermal maximum (PETM) , 2007 .

[51]  Julia C. Hargreaves,et al.  Regulation of atmospheric CO2 by deep‐sea sediments in an Earth system model , 2007 .

[52]  M. Storey,et al.  Paleocene-Eocene Thermal Maximum and the Opening of the Northeast Atlantic , 2007, Science.

[53]  F. Tateo,et al.  Mode and tempo of the Paleocene-Eocene thermal maximum in an expanded section from the Venetian pre-Alps , 2007 .

[54]  P. Pearson,et al.  Microstructural and geochemical perspectives on planktic foraminiferal preservation: “Glassy” versus “Frosty” , 2006 .

[55]  A. J. Kaufman,et al.  Experimental measurement of boron isotope fractionation in seawater , 2006 .

[56]  James D. Annan,et al.  Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling , 2006 .

[57]  D. Schrag,et al.  Beyond methane: Towards a theory for the Paleocene-Eocene Thermal Maximum , 2006 .

[58]  R. Norris,et al.  Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period , 2006, Nature.

[59]  Robert Marsh,et al.  Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model , 2005 .

[60]  A. Malthe-Sørenssen,et al.  Release of methane from a volcanic basin as a mechanism for initial Eocene global warming , 2004, Nature.

[61]  H. Elderfield,et al.  A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry , 2003 .

[62]  B. Hönisch,et al.  The influence of symbiont photosynthesis on the boron isotopic composition of foraminifera shells. , 2003 .

[63]  D. Wolf-Gladrow,et al.  Vital effects in foraminifera do not compromise the use of δ11B as a paleo‐pH indicator: Evidence from modeling , 2003 .

[64]  K. Farley,et al.  An alternative age model for the Paleocene–Eocene thermal maximum using extraterrestrial 3He , 2003 .

[65]  C. Allègre,et al.  Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic , 2002 .

[66]  D. Lea,et al.  Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy. , 2001 .

[67]  G. Wefer,et al.  New chronology for the late Paleocene thermal maximum and its environmental implications , 2000 .

[68]  Sang-Tae Kim,et al.  Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates , 1997 .

[69]  Pascal Yiou,et al.  Macintosh Program performs time‐series analysis , 1996 .

[70]  R. M. Owen,et al.  Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene , 1995 .

[71]  Patrick V. Brady,et al.  The effect of silicate weathering on global temperature and atmospheric CO2 , 1991 .

[72]  J. Edmond,et al.  Boron isotope exchange between seawater and the oceanic crust , 1987 .

[73]  H. Jenkyns Cretaceous anoxic events: from continents to oceans , 1980, Journal of the Geological Society.

[74]  P. Bown,et al.  Ocean warming, not acidification, controlled coccolithophore response during past greenhouse climate change , 2016 .

[75]  S. Schiavon,et al.  Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change , 2014 .

[76]  Hollis G. Potter,et al.  Author Manuscript , 2013 .

[77]  J. Hargreaves,et al.  Regulation of atmospheric CO 2 by deep-sea sediments in an Earth system model , 2007 .

[78]  A. Pardo,et al.  Planktic foraminiferal turnover across the Paleocene-Eocene transition at DSDP Site 401, Bay of Biscay, North Atlantic , 1997 .