Deciding unambiguity and sequentiality from a finitely ambiguous max-plus automaton

Finite automata with weights in the max-plus semiring are considered. The main result is: it is decidable whether a series that is recognized by a finitely ambiguous max-plus automaton is unambiguous, or is sequential. Furthermore, the proof is constructive. A collection of examples is given to illustrate the hierarchy of max-plus series with respect to ambiguity.

[1]  S. Gaubert Performance evaluation of (max, +) automata , 1995, IEEE Trans. Autom. Control..

[2]  Andreas Weber Finite-Valued Distance Automata , 1994, Theor. Comput. Sci..

[3]  Helmut Seidl,et al.  On the Degree of Ambiguity of Finite Automata , 1991, Theor. Comput. Sci..

[4]  Arto Salomaa,et al.  Semirings, Automata and Languages , 1985 .

[5]  Jean-Marc Vincent,et al.  Dynamics of synchronized parallel systems , 1997 .

[6]  Cyril Allauzen,et al.  Efficient Algorithms for Testing the Twins Property , 2003, J. Autom. Lang. Comb..

[7]  Imre Simon,et al.  Recognizable Sets with Multiplicities in the Tropical Semiring , 1988, MFCS.

[8]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[9]  J. Mairesse,et al.  Idempotency: Task resource models and (max, +) automata , 1998 .

[10]  Mehryar Mohri,et al.  Finite-State Transducers in Language and Speech Processing , 1997, CL.

[11]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[12]  Christian Choffrut,et al.  Une Caracterisation des Fonctions Sequentielles et des Fonctions Sous-Sequentielles en tant que Relations Rationnelles , 1977, Theor. Comput. Sci..

[13]  G. Viennot Heaps of Pieces, I: Basic Definitions and Combinatorial Lemmas , 1989 .

[14]  Raffaele Giancarlo,et al.  On the Determinization of Weighted Finite Automata , 2000, SIAM J. Comput..

[15]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[16]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[17]  P. Moller Théorie algébrique des systèmes à évènements discrets , 1988 .

[18]  Jean Mairesse,et al.  Modeling and analysis of timed Petri nets using heaps of pieces , 1997, 1997 European Control Conference (ECC).

[19]  Daniel Krob,et al.  The Equality Problem for Rational Series with Multiplicities in the tropical Semiring is Undecidable , 1992, Int. J. Algebra Comput..

[20]  Kosaburo Hashiguchi,et al.  Algorithms for Determining Relative Star height and Star Height , 1988, IFIP Congress.

[21]  Arto Salomaa,et al.  Semirings, Automata, Languages , 1985, EATCS Monographs on Theoretical Computer Science.

[22]  Daniel Krob,et al.  A Complete System of Identities for One-Letter Rational Expressions with Multiplicities in the Tropical Semiring , 1994, Theor. Comput. Sci..

[23]  Shuji Jimbo,et al.  Decidability of The Equivalence Problem for Finitely Ambiguous Finance Automata , 2002, Int. J. Algebra Comput..

[24]  Jacques Sakarovitch A Construction on Finite Automata that has Remained Hidden , 1998, Theor. Comput. Sci..

[25]  Marcel Paul Schützenberger,et al.  Sur les Relations Rationnelles Entre Monoides Libres , 1976, Theor. Comput. Sci..

[26]  Jacques Sakarovitch,et al.  Squaring transducers: an efficient procedure for deciding functionality and sequentiality , 2000, Theor. Comput. Sci..

[27]  Reinhard Klemm,et al.  Economy of Description for Single-Valued Transducers , 1994, Inf. Comput..