Signal analysis via instantaneous frequency estimation of signal components
暂无分享,去创建一个
[1] Norden E. Huang,et al. A review on Hilbert‐Huang transform: Method and its applications to geophysical studies , 2008 .
[2] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[3] Balth. van der Pol,et al. The Fundamental Principles of Frequency Modulation , 1946 .
[4] O. Eisen,et al. Ground‐based measurements of spatial and temporal variability of snow accumulation in East Antarctica , 2008 .
[5] Gene H. Golub,et al. Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.
[6] R. Sharpley,et al. Analysis of the Intrinsic Mode Functions , 2006 .
[7] C. D. Boor,et al. Spline approximation by quasiinterpolants , 1973 .
[8] I. J. Schoenberg,et al. On Pólya frequency functions IV: The fundamental spline functions and their limits , 1966 .
[9] Boualem Boashash,et al. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.
[10] Yuesheng Xu,et al. A B-spline approach for empirical mode decompositions , 2006, Adv. Comput. Math..
[11] N. Huang,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[12] Charles K. Chui,et al. Signal decomposition and analysis via extraction of frequencies , 2016 .
[13] Boualem Boashash,et al. Estimating and interpreting the instantaneous frequency of a signal. II. A/lgorithms and applications , 1992, Proc. IEEE.
[14] Charles K. Chui,et al. Real-time dynamics acquisition from irregular samples -- with application to anesthesia evaluation , 2014, 1406.1276.
[15] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .
[16] Gabriel Rilling,et al. One or Two Frequencies? The Empirical Mode Decomposition Answers , 2008, IEEE Transactions on Signal Processing.
[17] N. Huang,et al. A study of the characteristics of white noise using the empirical mode decomposition method , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[18] Norden E. Huang,et al. Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..
[19] Patrick Flandrin,et al. One or Two frequencies? The Synchrosqueezing Answers , 2011, Adv. Data Sci. Adapt. Anal..
[20] Hau-Tieng Wu,et al. Non‐parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors , 2014 .
[21] H. Weyl. Gruppentheorie und Quantenmechanik , 1928 .
[22] Dennis Gabor,et al. Theory of communication , 1946 .
[23] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[24] I. Daubechies,et al. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .
[25] Josef Stoer,et al. Numerische Mathematik 1 , 1989 .
[26] Charles K. Chui,et al. A General framework for local interpolation , 1990 .
[27] Xianhong Xie,et al. Optimal spline smoothing of fMRI time series by generalized cross-validation , 2003, NeuroImage.
[28] G. Wahba. Smoothing noisy data with spline functions , 1975 .
[29] J. Craggs. Applied Mathematical Sciences , 1973 .
[30] Hau-Tieng Wu,et al. Synchrosqueezing-Based Recovery of Instantaneous Frequency from Nonuniform Samples , 2010, SIAM J. Math. Anal..
[31] E. H. Kennard. Zur Quantenmechanik einfacher Bewegungstypen , 1927 .
[32] J. Skilling,et al. Algorithms and Applications , 1985 .