Combined assessment of the environmental, economic and social impacts of structural solutions for residential construction

Sustainable development in construction is based on three fundamental pillars: economic, environmental and social. This type of approach aims to identify the best possible solutions for sustainably developing structures by conducting a joint evaluation of the impact on those three pillars. The proposed methodology incorporates metadata on the Spanish construction sector. First, a discrete database is generated with 360 alternatives covering a range of common solutions in residential building. A Pareto algorithm is utilized to select the optimal choices and the wide range of solutions is reduced to the 5 % of the initial group. The project manager is therefore provided with an objective assessment of suitable structural alternatives including the overall joint economic, social, and environmental impact. The results obtained demonstrate the importance and utility of the proposed methodology for sustainable construction.

[1]  Rehan Sadiq,et al.  Sustainability assessment of flooring systems in the city of Tehran: An AHP-based life cycle analysis , 2011 .

[2]  M. Cellura,et al.  The role of the building sector for reducing energy consumption and greenhouse gases: An Italian case study , 2013 .

[3]  Oriol Pons,et al.  Integrated sustainability assessment method applied to structural concrete columns , 2013 .

[4]  G. Norris Social Impacts in Product Life Cycles - Towards Life Cycle Attribute Assessment , 2006 .

[5]  David Hunkeler,et al.  Societal LCA Methodology and Case Study (12 pp) , 2006 .

[6]  Antonia Pacios Alvarez,et al.  Estimación del índice de contribución de la estructura a la sostenibilidad en ejemplos de edificación , 2008 .

[8]  Ignacio Zabalza Bribián,et al.  Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential , 2011 .

[9]  Wen-Hsien Tsai,et al.  Incorporating life cycle assessments into building project decision-making: An energy consumption and CO2 emission perspective , 2011 .

[10]  Marta Maria Sesana,et al.  Overview on life cycle methodologies and economic feasibility for nZEBs , 2013 .

[11]  Gonzalo Bernardos Domínguez,et al.  Creación y destrucción de la burbuja inmobiliaria en España , 2009 .

[12]  Belinda López-Mesa,et al.  Revisión de herramientas de asistencia en la selección de soluciones constructivas sostenibles de edificación , 2013 .

[13]  Moacir Kripka,et al.  Optimization of reinforced concrete columns according to different environmental impact assessment parameters , 2014 .

[14]  Mary Ben Bonham Leading by example: new professionalism and the government client , 2013 .

[15]  Walter Kloepffer,et al.  Life cycle sustainability assessment of products , 2008 .

[16]  Andreas Jørgensen,et al.  Methodologies for social life cycle assessment , 2008 .

[17]  Luisa F. Cabeza,et al.  Evaluation of the environmental impact of experimental buildings with different constructive systems using Material Flow Analysis and Life Cycle Assessment , 2013 .