Reaction Mechanism of Aluminum-Particle-Air Detonation

Both in-tube and unconfined experimental evidence showed strong dependence of micrometric aluminum-air detonability on initial pressure and highly nonlinear behavior of abrupt deflagration-to-detonation transition, thus indicating dependence of the aluminum reaction mechanism of the detonation waves on chemical kinetics. On the other hand, the observed aluminum―air detonation manifested itself in a weak transverse wave structure, as revealed by the small-amplitude oscillation that rapidly degenerates behind the shock front in the pressure histories. This suggests a functional dependence that is weaker than the nonlinear Arrhenius kinetic behavior for the later aluminum combustion. Hence, a surface kinetic oxidation and diffusion hybrid reaction model with a degree of condensed detonation products was suggested, and the unsteady two-phase fluid dynamics modeling showed the success of the hybrid reaction model, capable of capturing both the kinetics-limited transient processes of detonation initiation, abrupt deflagration-to-detonation transition and detonation instability, and the diffusion-limited combustion of aluminum in the long reaction zone, supporting the weak transverse wave structure.

[1]  A. Higgins,et al.  Aluminum Particle Combustion in High-Speed Detonation Products , 2009 .

[2]  H. Krier,et al.  A correlation for burn time of aluminum particles in the transition regime , 2009 .

[3]  V. Tanguay,et al.  Unconfined aluminum particles-air detonation , 2009 .

[4]  Fan Zhang 2 Detonation of Gas-Particle Flow , 2009 .

[5]  A. V. Fedorov,et al.  Formation and degeneration of cellular detonation in bidisperse gas suspensions of aluminum particles , 2008 .

[6]  B. Veyssière,et al.  Investigation of detonation initiation in aluminium suspensions , 2008 .

[7]  Fan Zhang,et al.  EFFECT OF SHOCK COMPRESSION ON ALUMINUM PARTICLES IN CONDENSED MEDIA , 2008 .

[8]  Fan Zhang Detonation in Reactive Solid Particle-Gas Flow , 2006 .

[9]  Fan Zhang,et al.  Aluminum Particles–air Detonation at Elevated Pressures , 2006 .

[10]  A. Koichi Hayashi,et al.  Parametric Studies of an Aluminum Combustion Model for Simulations of Detonation Waves , 2006 .

[11]  A. V. Fedorov,et al.  Numerical Simulation of Formation of Cellular Heterogeneous Detonation of Aluminum Particles in Oxygen , 2005 .

[12]  K. Benkiewicz,et al.  Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement , 2003 .

[13]  H. Krier,et al.  Burning Aluminum Particles Inside a Laboratory-Scale Solid Rocket Motor , 2001 .

[14]  A. van de Ven,et al.  DDT and detonation waves in dust-air mixtures , 2001 .

[15]  D. Frost,et al.  Explosive dispersal of solid particles , 2001 .

[16]  H. Krier,et al.  Ignition and combustion of aluminum particles in shocked H2O/O2/Ar and CO2/O2/Ar mixtures , 2000 .

[17]  Rodney L. Burton,et al.  Combustion of aluminum particles in solid rocket motor flows , 1999 .

[18]  Rodney L. Burton,et al.  Ignition and combustion of aluminum particles in H2/O2/N2 combustion products , 1998 .

[19]  Sanford Gordon,et al.  Computer program for calculating and fitting thermodynamic functions , 1992 .

[20]  B. Veyssière,et al.  On the Detonation of Aluminum Suspensions in Air and in Oxygen , 1991 .

[21]  V. Boiko,et al.  Ignition of gas suspensions of metallic powders in reflected shock waves , 1989 .

[22]  B. Khasainov Steady, Plane, Double-Front Detonations in Gaseous Detonable Mixtures Containing a Suspension of Aluminum Particles , 1988 .

[23]  J. Bowen,et al.  Steady, Plane, Double-Front Detonations in Gaseous Detonable Mixtures Containing a Suspension of Aluminum Particles , 1988 .

[24]  R. I. Soloukhin,et al.  Ignition of Dust Suspensions Behind Shock Waves , 1985 .

[25]  J. Selman,et al.  Detonation tube studies of aluminum particles dispersed in air , 1982 .

[26]  M. King Modeling of single particle aluminum combustion in CO2−N2 atmospheres , 1979 .

[27]  A. Fontijn,et al.  HTFFR kinetics studies of Al+CO2→AlO+CO from 300 to 1900 K, a non‐Arrhenius reaction , 1977 .

[28]  W. Strauss Investigation of the detonation of aluminum powder-oxygen mixtures. , 1968 .

[29]  A. Davis,et al.  Solid propellants: The combustion of particles of metal ingredients , 1963 .

[30]  R. Bartlett,et al.  Estimating aluminium particle combustion kinetics , 1963 .

[31]  A. Maček,et al.  Ignition and combustion of aluminium particles in hot ambient gases , 1962 .