Phase retrieval in low-coherence interferometric microscopy.

We present compensating methods that address inherent errors in quantitative phase reporting for low-coherence interferometric techniques. A brief theoretical treatment of the problem and experimental validation using spectral domain phase microscopy demonstrate mitigation of the degrading effects of phase leakage on accurate measurement of optical path length in the vicinity of closely spaced reflectors. This result has direct implications for phase-sensitive interferometry techniques, such as Doppler imaging, as well as amplitude-based quantitative reporting. Corrected phase retrieval is demonstrated for conversion of interferometric phase to optical path length in cell surface deflections of beating cardiomyocytes.