A three-parameter Weibull statistical analysis of the strength variation of bulk metallic glasses

A detailed reliability analysis of a series of Zr-based bulk metallic glasses (BMGs) was conducted using three-parameter Weibull model. In particular, the location parameter of the three-parameter Weibull was used to characterize the presence of critical failure-free stress, i.e. the stress below which there is no failure. Such characterization results in almost identical estimates for the Weibull modulus of these BMGs, indicating that their failure mechanism is the same. The three-parameter Weibull model thus provides a more interpretable and accurate reliability assessment of BMGs.

[1]  Patrick J. Pagni,et al.  Fire-induced thermal fields in window glass. II—experiments , 1994 .

[2]  M. Bolton,et al.  The fractal crushing of granular materials , 1996 .

[3]  Jian Xu,et al.  Reliability of compressive fracture strength of Mg–Zn–Ca bulk metallic glasses: Flaw sensitivity and Weibull statistics , 2008 .

[4]  Lei Lu,et al.  High tensile strength reliability in a bulk metallic glass , 2008 .

[5]  J. Lewandowski,et al.  Chemistry (intrinsic) and inclusion (extrinsic) effects on the toughness and Weibull modulus of Fe-based bulk metallic glasses , 2008 .

[6]  John J. Lewandowski,et al.  Mechanical Properties of Bulk Metallic Glasses , 2007 .

[7]  S. Dubey Hyper‐efficient estimator of the location parameter of the weibull laws , 1966 .

[8]  S M Kurtz,et al.  Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures. , 2005, Biomaterials.

[9]  Antoni Drapella,et al.  An improved failure-free time estimation method , 1999 .

[10]  M. Jenkins,et al.  Tensile Fracture Behavior of Two Types of Silicon Nitride Specimen Geometries Conducted by Ten U.S. Groups , 2004 .

[11]  A. Argon,et al.  Plastic flow in a disordered bubble raft (an analog of a metallic glass) , 1979 .

[12]  J. Zou,et al.  Effect of over-doped yttrium on the microstructure, mechanical properties and thermal properties of a Zr-based metallic glass , 2006 .

[13]  Ayala Cohen,et al.  Analysis of large sets of ranking data , 1982 .

[14]  Xiaosheng Gao,et al.  An investigation of the loading rate dependence of the Weibull stress parameters , 2008 .

[15]  Jie-Hua Zhao A three-parameter Weibull-like fitting function for flip-chip die strength data , 2004, Microelectron. Reliab..

[16]  Malcolm D. Bolton,et al.  On the micromechanics of crushable aggregates , 1998 .

[17]  Loon Ching Tang,et al.  A study of two estimation approaches for parameters of Weibull distribution based on WPP , 2007, Reliab. Eng. Syst. Saf..

[18]  J. Malzbender,et al.  Threshold fracture stress of thin ceramic components , 2008 .

[19]  Thierry Palin-Luc,et al.  Estimation of the fatigue strength distribution in high-cycle multiaxial fatigue taking into account the stress–strain gradient effect , 2006 .

[20]  K. Kromp,et al.  Statistical properties of Weibull estimators , 1991 .

[21]  Christopher A. Schuh,et al.  Strength, plasticity and brittleness of bulk metallic glasses under compression: statistical and geometric effects , 2008 .

[22]  W. Johnson Bulk Glass-Forming Metallic Alloys: Science and Technology , 1999 .

[23]  Michael Tortorella Advances in Stochastic Models for Reliability, Quality and Safety , 1999, Technometrics.

[24]  Weihua Wang,et al.  Intrinsic plasticity or brittleness of metallic glasses , 2005 .

[25]  P. Uggowitzer,et al.  Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics , 2009 .

[26]  Frans Spaepen,et al.  A microscopic mechanism for steady state inhomogeneous flow in metallic glasses , 1977 .

[27]  J. C. Huang,et al.  Bulk and microscale compressive behavior of a Zr-based metallic glass , 2008 .

[28]  W. Soboyejo,et al.  A Statistical Approach to the Prediction of Brittle Fracture in Heat-Affected Zones of A707 Steel Welds , 2004 .

[29]  Y. Li,et al.  Ductile Fe-Nb-B bulk metallic glass with ultrahigh strength , 2008 .

[30]  Min Xie,et al.  Robust Regression using Probability Plots for Estimating the Weibull Shape Parameter , 2006, Qual. Reliab. Eng. Int..

[31]  Osamu Kusakabe,et al.  TIME-DEPENDENT BEHAVIOR OF CRUSHABLE MATERIALS IN ONE-DIMENSIONAL COMPRESSION TESTS , 2001 .

[32]  H. S. Chen,et al.  Plastic flow and fracture of metallic glass , 1972 .

[33]  Jing Zhang,et al.  Quaternary Fe-based bulk metallic glasses with a diameter of 5 mm , 2007 .