On the global attractivity of monotone random dynamical systems

Suppose that (θ,ϕ) is a monotone (order-preserving) random dynamical system (RDS for short) with state space V, where V is a real separable Banach space with a normal solid minihedral cone V + . It is proved that the unique equilibrium of (θ, ϕ) is globally attractive if every pull-back trajectory has compact closure in V.

[1]  Eduardo Sontag,et al.  Global attractivity, I/O monotone small-gain theorems, and biological delay systems , 2005 .

[2]  Jiang Jifa,et al.  Stable Cycles for Attractors of Strongly Monotone Discrete-Time Dynamical Systems , 1996 .

[3]  P. Polácik,et al.  Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems , 1992 .

[4]  M. Hirsch,et al.  4. Monotone Dynamical Systems , 2005 .

[5]  S. Smale On the differential equations of species in competition , 1976, Journal of mathematical biology.

[6]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[7]  P. Polácik,et al.  Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations , 1993 .

[8]  Eduardo Sontag,et al.  Monotone Chemical Reaction Networks , 2007 .

[9]  Xiao-Qiang Zhao,et al.  Convergence in monotone and uniformly stable skew-product semiflows with applications , 2005 .

[10]  Eduardo D Sontag,et al.  Global stability in a chemostat with multiple nutrients , 2006, Journal of mathematical biology.

[11]  R. Obaya,et al.  Stability and extensibility results for abstract skew-product semiflows☆ , 2007 .

[12]  JI Ji-Fa On the Analytic Order-Preserving Discrete-Time Dynamical Systems in Rn with every Fixed Point Stable , 1996 .

[13]  Hal L. Smith Planar competitive and cooperative difference equations , 1998 .

[14]  I. Chueshov Monotone Random Systems Theory and Applications , 2002 .

[15]  Jiang Jifa,et al.  On the Global Stability of Cooperative Systems , 1994 .

[16]  J. F. Jiang,et al.  Sublinear discrete-time order-preserving dynamical systems , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  P. Polácik,et al.  Convergence in smooth strongly monotone flows defined by semilinear parabolic equations , 1989 .

[18]  Horst R. Thieme,et al.  Convergence for strongly order-preserving semiflows , 1991 .

[19]  W. Shen,et al.  Asymptotic Behavior of Positive Solutions of Random and Stochastic Parabolic Equations of Fisher and Kolmogorov Types , 2002 .

[20]  Ji Fa Jiang A note on a global stability theorem of M. W. Hirsch , 1991 .

[21]  M. Hirsch Stability and convergence in strongly monotone dynamical systems. , 1988 .

[22]  L. Arnold Random Dynamical Systems , 2003 .

[23]  Jiang Jifa,et al.  Periodic monotone systems with an invariant function , 1996 .

[24]  Eduardo D. Sontag,et al.  Molecular Systems Biology and Control , 2005, Eur. J. Control.

[25]  E. N. Dancer Some remarks on a boundedness assumption for monotone dynamical systems , 1998 .

[26]  E. N. Dancer,et al.  Realization of vector fields and dynamics of spatially homogeneous parabolic equations , 1999 .