Solitary wave of the Korteweg-de Vries equation based on lattice Boltzmann model with three conservation laws

Abstract In this paper, a new lattice Boltzmann model for the Korteweg-de Vries (KdV) equation is proposed. By using the Chapman-Enskog expansion and the multi-scale time expansion, a series of partial differential equations in different time scales and several higher- order moments of equilibrium distribution functions are obtained. In order to make the scheme obey the three conservation laws of the KdV equation, two equilibrium distribution functions are used and a correlation between the first conservation law and the second conservation law is constructed. In numerical examples, the numerical results of the KdV equation obtained by this scheme are compared with those results obtained by the previous lattice Boltzmann model. Numerical experiments demonstrate this scheme can be used to reduce the truncation error of the lattice Boltzmann scheme and preserve the three conservation laws.

[1]  Huimin Wang,et al.  Numerical simulation of the ion-acoustic solitary waves in plasma based on lattice Boltzmann method , 2015 .

[2]  Moran Wang,et al.  Roughness and cavitations effects on electro-osmotic flows in rough microchannels using the lattice Poisson-Boltzmann methods , 2007, J. Comput. Phys..

[3]  Guangwu Yan,et al.  A lattice Boltzmann model for the Korteweg-de Vries equation with two conservation laws , 2009, Comput. Phys. Commun..

[4]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[5]  James M. Finley,et al.  Unilateral Eccentric Contraction of the Plantarflexors Leads to Bilateral Alterations in Leg Dexterity , 2016, Front. Physiol..

[6]  Changfeng Ma,et al.  Numerical Study of the Nonlinear Combined Sine-Cosine-Gordon Equation with the Lattice Boltzmann Method , 2012, J. Sci. Comput..

[7]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[8]  Irina Ginzburg,et al.  Variably saturated flow described with the anisotropic Lattice Boltzmann methods , 2006 .

[9]  O. Filippova,et al.  Lattice-Boltzmann simulation of gas-particle flow in filters , 1997 .

[10]  Guangwu Yan,et al.  Lattice Boltzmann model for wave propagation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  J. Zhou Lattice Boltzmann Methods for Shallow Water Flows , 2003 .

[12]  Michihisa Tsutahara,et al.  Lattice Boltzmann method for the compressible Euler equations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Huimin Wang,et al.  A lattice Boltzmann model for the ion- and electron-acoustic solitary waves in beam-plasma system , 2016, Appl. Math. Comput..

[14]  Sauro Succi,et al.  Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number , 2010, ArXiv.

[15]  Guangwu Yan,et al.  A higher-order moment method of the lattice Boltzmann model for the Korteweg-de Vries equation , 2009, Math. Comput. Simul..

[16]  Sauro Succi Lattice Quantum Mechanics: An Application to Bose–Einstein Condensation , 1998 .

[17]  Shan,et al.  Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[19]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[20]  Zhenya Yan New compacton-like and solitary patterns-like solutions to nonlinear wave equations with linear dispersion terms , 2006 .

[21]  Changfeng Ma,et al.  Lattice Boltzmann model for generalized nonlinear wave equations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Yang Guangwu A Lattice Boltzmann Equation for Waves , 2000 .

[23]  H. Ki,et al.  Lattice Boltzmann method for weakly ionized isothermal plasmas. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[26]  阎广武,et al.  A lattice Boltzmann method for KDV equation , 1998 .

[27]  John G. Georgiadis,et al.  Migration of a van der Waals bubble: Lattice Boltzmann formulation , 2001 .

[28]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[29]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[30]  M. Helal,et al.  A comparison between two different methods for solving KdV–Burgers equation , 2006 .

[31]  Robert S. Bernard,et al.  Boundary conditions for the lattice Boltzmann method , 1996 .

[32]  Sauro Succi,et al.  Nonlinear Stability of Compressible Thermal Lattice BGK Models , 1999, SIAM J. Sci. Comput..

[33]  Guangwu Yan,et al.  Lattice Boltzmann method for one and two-dimensional Burgers equation ☆ , 2008 .

[34]  S Succi,et al.  Fast lattice Boltzmann solver for relativistic hydrodynamics. , 2010, Physical review letters.

[35]  Succi Numerical solution of the Schrödinger equation using discrete kinetic theory. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[37]  S Succi,et al.  Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Ping Dong,et al.  Lattice Boltzmann schemes for the nonlinear Schrödinger equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Sauro Succi,et al.  Lattice Boltzmann equation for quantum mechanics , 1993, comp-gas/9304002.

[40]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[41]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[42]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[43]  Guangwu Yan,et al.  Lattice Boltzmann model for the interaction of (2+1)-dimensional solitons in generalized Gross–Pitaevskii equation , 2016 .

[44]  S. Succi,et al.  Polar-coordinate lattice Boltzmann modeling of compressible flows. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Hua Li,et al.  Lattice Boltzmann model for combustion and detonation , 2013, 1304.7421.

[46]  C. W. Hirt Heuristic stability theory for finite-difference equations☆ , 1968 .

[47]  Chenghai Sun,et al.  Lattice-Boltzmann models for high speed flows , 1998 .

[48]  Luo Li-Shi,et al.  Theory of the lattice Boltzmann method: Lattice Boltzmann models for non-ideal gases , 2001 .

[49]  Skordos,et al.  Initial and boundary conditions for the lattice Boltzmann method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Yeomans,et al.  Lattice Boltzmann simulation of nonideal fluids. , 1995, Physical review letters.

[51]  R. Hirota Exact envelope‐soliton solutions of a nonlinear wave equation , 1973 .

[52]  John Abraham,et al.  Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow , 2007, J. Comput. Phys..

[53]  Miki Hirabayashi,et al.  The lattice BGK model for the Poisson equation , 2001 .

[54]  G. Ettema,et al.  The Role of Power Fluctuations in the Preference of Diagonal vs. Double Poling Sub-Technique at Different Incline-Speed Combinations in Elite Cross-Country Skiers , 2017, Front. Physiol..

[55]  S. Succi,et al.  Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method , 1989 .

[56]  Xiangzheng Li,et al.  A sub-ODE method for finding exact solutions of a generalized KdV–mKdV equation with high-order nonlinear terms , 2007 .

[57]  Turabi Geyikli,et al.  An application for a modified KdV equation by the decomposition method and finite element method , 2005, Appl. Math. Comput..

[58]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .

[59]  N. Zabusky A Synergetic Approach to Problems of Nonlinear Dispersive Wave Propagation and Interaction , 1967 .

[60]  Guangwu Yan,et al.  Lattice Bhatnagar—Gross—Krook model for the Lorenz attractor , 2001 .

[61]  Xijun Yu,et al.  Lattice Boltzmann modeling and simulation of compressible flows , 2012, 1209.3542.

[62]  Bo Yan,et al.  Lattice Boltzmann Model Based on the Rebuilding-Divergency Method for the Laplace Equation and the Poisson Equation , 2011, J. Sci. Comput..

[63]  Zhenhua Chai,et al.  A novel lattice Boltzmann model for the Poisson equation , 2008 .

[64]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[65]  S Succi,et al.  Numerical validation of the quantum lattice Boltzmann scheme in two and three dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[67]  Changfeng Ma,et al.  A new lattice Boltzmann model for solving the coupled viscous Burgers’ equation , 2014 .

[68]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .