Equilibrium and Non-equilibrium Properties of Superfluids and Superconductors
暂无分享,去创建一个
[1] W. Wreszinski,et al. Bogoliubov Quasiaverages: Spontaneous Symmetry Breaking and the Algebra of Fluctuations , 2017, 1704.00190.
[2] A. Sütő. Galilean invariance in confined quantum systems: implications for spectral gaps, superfluid flow, and periodic order. , 2014, Physical Review Letters.
[3] L. Kadanoff. Slippery Wave Functions , 2013, 1303.0585.
[4] W. Wreszinski,et al. Asymptotic Time Decay in Quantum Physics , 2012 .
[5] S. Virmani. Introduction to Quantum Statistical Mechanics, 2nd edn., by N.N. Bogolubov and N.N. Bogolubov Jr , 2011 .
[6] A. Verbeure,et al. Many-Body Boson Systems: Half a Century Later , 2010 .
[7] W. Wreszinski,et al. On the mathematical theory of superfluidity , 2008, 0810.4874.
[8] R. Seiringer,et al. The Lieb-Liniger Model as a Limit of Dilute Bosons in Three Dimensions , 2007, 0709.4022.
[9] H. Cornean,et al. ON THE INFIMUM OF THE ENERGY-MOMENTUM SPECTRUM OF A HOMOGENEOUS BOSE GAS , 2005, math-ph/0511007.
[10] W. Wreszinski,et al. Onsager's inequality, the Landau-Feynman ansatz and superfluidity , 2004, cond-mat/0411640.
[11] M. Baranger. Many-Body Problems and Quantum Field Theory: An Introduction , 2004 .
[12] N. Davidson,et al. Bragg spectroscopy of the multibranch Bogoliubov spectrum of elongated Bose-Einstein condensates. , 2002, Physical review letters.
[13] B. Kuckert. Covariant Thermodynamics of Quantum Systems: Passivity, Semipassivity, and the Unruh Effect , 2001, hep-th/0107236.
[14] V. Zagrebnov,et al. The Bogoliubov model of weakly imperfect Bose gas , 2001 .
[15] T. Dorlas. Orthogonality and completeness of the Bethe Ansatz eigenstates of the nonlinear Schroedinger model , 1993 .
[16] S. Panfil. Quantum theory of collective phenomena , 1991, Acta Applicandae Mathematicae.
[17] A. Pekalski,et al. Ordering phenomena in condensed matter physics , 1991 .
[18] G. Sewell. Off-diagonal long-range order and the Meissner effect , 1990 .
[19] O. Bratteli. Operator Algebras And Quantum Statistical Mechanics , 1979 .
[20] I. Ventura. Theory of Superfluidity , 1979 .
[21] L. Hemmen. Linear Fermion Systems, Molecular Field Models, and the KMS Condition , 1978, 1978.
[22] D. W. Robinson,et al. Stability properties and the KMS condition , 1978 .
[23] O. Seeberg. Statistical Mechanics. — A Set of Lectures , 1975 .
[24] Rudolf Haag,et al. Stability and equilibrium states , 1974 .
[25] D. Dubin,et al. Time Translations in the Algebraic Formulation of Statistical Mechanics , 1970 .
[26] J. Ziman. Principles of the Theory of Solids , 1965 .
[27] A. Lenard. Momentum Distribution in the Ground State of the One-Dimensional System of Impenetrable Bosons , 1964 .
[28] E. Lieb,et al. EXACT ANALYSIS OF AN INTERACTING BOSE GAS. I. THE GENERAL SOLUTION AND THE GROUND STATE , 1963 .
[29] E. Lieb. Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum , 1963 .
[30] R. Haag. The mathematical structure of the bardeen-cooper-schrieffer model , 1962 .
[31] M. Girardeau,et al. Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension , 1960 .
[32] M. R. Schafeoth. Theoretical Aspects of Superconductivity , 1960 .
[33] P. Anderson. Random-Phase Approximation in the Theory of Superconductivity , 1958 .
[34] N. N. Bogoljubov. On a new method in the theory of superconductivity , 1958 .
[35] M. R. Schafroth,et al. Superconductivity of a Charged Ideal Bose Gas , 1955 .
[36] K. Cheng. Theory of Superconductivity , 1948, Nature.
[37] H. London,et al. The electromagnetic equations of the supraconductor , 1935 .