Equilibrium and Non-equilibrium Properties of Superfluids and Superconductors

[1]  W. Wreszinski,et al.  Bogoliubov Quasiaverages: Spontaneous Symmetry Breaking and the Algebra of Fluctuations , 2017, 1704.00190.

[2]  A. Sütő Galilean invariance in confined quantum systems: implications for spectral gaps, superfluid flow, and periodic order. , 2014, Physical Review Letters.

[3]  L. Kadanoff Slippery Wave Functions , 2013, 1303.0585.

[4]  W. Wreszinski,et al.  Asymptotic Time Decay in Quantum Physics , 2012 .

[5]  S. Virmani Introduction to Quantum Statistical Mechanics, 2nd edn., by N.N. Bogolubov and N.N. Bogolubov Jr , 2011 .

[6]  A. Verbeure,et al.  Many-Body Boson Systems: Half a Century Later , 2010 .

[7]  W. Wreszinski,et al.  On the mathematical theory of superfluidity , 2008, 0810.4874.

[8]  R. Seiringer,et al.  The Lieb-Liniger Model as a Limit of Dilute Bosons in Three Dimensions , 2007, 0709.4022.

[9]  H. Cornean,et al.  ON THE INFIMUM OF THE ENERGY-MOMENTUM SPECTRUM OF A HOMOGENEOUS BOSE GAS , 2005, math-ph/0511007.

[10]  W. Wreszinski,et al.  Onsager's inequality, the Landau-Feynman ansatz and superfluidity , 2004, cond-mat/0411640.

[11]  M. Baranger Many-Body Problems and Quantum Field Theory: An Introduction , 2004 .

[12]  N. Davidson,et al.  Bragg spectroscopy of the multibranch Bogoliubov spectrum of elongated Bose-Einstein condensates. , 2002, Physical review letters.

[13]  B. Kuckert Covariant Thermodynamics of Quantum Systems: Passivity, Semipassivity, and the Unruh Effect , 2001, hep-th/0107236.

[14]  V. Zagrebnov,et al.  The Bogoliubov model of weakly imperfect Bose gas , 2001 .

[15]  T. Dorlas Orthogonality and completeness of the Bethe Ansatz eigenstates of the nonlinear Schroedinger model , 1993 .

[16]  S. Panfil Quantum theory of collective phenomena , 1991, Acta Applicandae Mathematicae.

[17]  A. Pekalski,et al.  Ordering phenomena in condensed matter physics , 1991 .

[18]  G. Sewell Off-diagonal long-range order and the Meissner effect , 1990 .

[19]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[20]  I. Ventura Theory of Superfluidity , 1979 .

[21]  L. Hemmen Linear Fermion Systems, Molecular Field Models, and the KMS Condition , 1978, 1978.

[22]  D. W. Robinson,et al.  Stability properties and the KMS condition , 1978 .

[23]  O. Seeberg Statistical Mechanics. — A Set of Lectures , 1975 .

[24]  Rudolf Haag,et al.  Stability and equilibrium states , 1974 .

[25]  D. Dubin,et al.  Time Translations in the Algebraic Formulation of Statistical Mechanics , 1970 .

[26]  J. Ziman Principles of the Theory of Solids , 1965 .

[27]  A. Lenard Momentum Distribution in the Ground State of the One-Dimensional System of Impenetrable Bosons , 1964 .

[28]  E. Lieb,et al.  EXACT ANALYSIS OF AN INTERACTING BOSE GAS. I. THE GENERAL SOLUTION AND THE GROUND STATE , 1963 .

[29]  E. Lieb Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum , 1963 .

[30]  R. Haag The mathematical structure of the bardeen-cooper-schrieffer model , 1962 .

[31]  M. Girardeau,et al.  Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension , 1960 .

[32]  M. R. Schafeoth Theoretical Aspects of Superconductivity , 1960 .

[33]  P. Anderson Random-Phase Approximation in the Theory of Superconductivity , 1958 .

[34]  N. N. Bogoljubov On a new method in the theory of superconductivity , 1958 .

[35]  M. R. Schafroth,et al.  Superconductivity of a Charged Ideal Bose Gas , 1955 .

[36]  K. Cheng Theory of Superconductivity , 1948, Nature.

[37]  H. London,et al.  The electromagnetic equations of the supraconductor , 1935 .