Superfast Approximative Implementation of the IAA Spectral Estimate

In this correspondence, we develop superfast approximative one-dimensional algorithms for the computationally efficient implementation of the recent iterative adaptive approach (IAA) spectral estimate. The proposed methods are based on rewriting the IAA algorithm with suitable Gohberg-Semencul representations, solving the resulting linear systems of equations using the preconditioned conjugate gradient method, where a novel preconditioning is applied using an incomplete factorization of the Toeplitz matrix. Numerical simulations illustrate the efficiency of both the proposed preconditioning as well as the overall algorithm, offering a computational reduction of up to two orders of magnitude as compared to our recently proposed efficient and exact IAA implementation.

[1]  K. Abed-Meraim,et al.  Fast algorithms for subspace tracking , 2001, IEEE Signal Processing Letters.

[2]  Roland Badeau,et al.  Fast and Stable YAST Algorithm for Principal and Minor Subspace Tracking , 2008, IEEE Transactions on Signal Processing.

[3]  Daniel B. Szyld,et al.  An introduction to iterative Toeplitz solvers , 2009, Math. Comput..

[4]  V. Pan Structured Matrices and Polynomials , 2001 .

[5]  Lu Yang,et al.  Adaptive Noise Subspace Estimation Algorithm Suitable for VLSI Implementation , 2009, IEEE Signal Processing Letters.

[6]  Steve Bartelmaos,et al.  Principal and Minor Subspace Tracking: Algorithms & Stability Analysis , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[7]  George-Othon Glentis,et al.  Efficient Implementation of Iterative Adaptive Approach Spectral Estimation Techniques , 2011, IEEE Transactions on Signal Processing.

[8]  Roland Badeau,et al.  Yet another subspace tracker , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[9]  Roland Badeau,et al.  Yast Algorithm for Minor Subspace Tracking , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[10]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[11]  Lu Yang,et al.  Analysis of Orthogonality Error Propagation for FRANS and HFRANS Algorithms , 2008, IEEE Transactions on Signal Processing.

[12]  Rafael Boloix-Tortosa,et al.  Blind adaptive channel estimation for OFDM systems , 2009, 2009 IEEE 10th Workshop on Signal Processing Advances in Wireless Communications.

[13]  Sergios Theodoridis,et al.  Fast Newton transversal filters-a new class of adaptive estimation algorithms , 1991, IEEE Trans. Signal Process..

[14]  Paul D. Gader,et al.  A variant of the Gohberg-Semencul formula involving circulant matrices , 1991 .

[15]  Karim Abed-Meraim,et al.  An Efficient & Stable Algorithm for Minor Subspace Tracking and Stability Analysis , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[16]  George-Othon Glentis,et al.  Time-Recursive IAA Spectral Estimation , 2011, IEEE Signal Processing Letters.

[17]  George V. Moustakides,et al.  Fast and Stable Subspace Tracking , 2008, IEEE Transactions on Signal Processing.

[18]  I. Gohberg,et al.  Complexity of multiplication with vectors for structured matrices , 1994 .

[19]  Petre Stoica,et al.  Capon estimation of covariance sequences , 1998 .

[20]  Roland Badeau,et al.  Fast approximated power iteration subspace tracking , 2005, IEEE Transactions on Signal Processing.

[21]  Karim Abed-Meraim,et al.  Low-cost adaptive algorithm for noise subspace estimation , 2002 .

[22]  Ali H. Sayed,et al.  Displacement Structure: Theory and Applications , 1995, SIAM Rev..

[23]  V. Pan Structured Matrices and Polynomials: Unified Superfast Algorithms , 2001 .

[24]  George-Othon Glentis,et al.  A Fast Algorithm for APES and Capon Spectral Estimation , 2008, IEEE Transactions on Signal Processing.

[25]  Jian Li,et al.  Missing Data Recovery Via a Nonparametric Iterative Adaptive Approach , 2009, IEEE Signal Processing Letters.

[26]  Andreas Jakobsson,et al.  Matched-filter bank interpretation of some spectral estimators , 1998, Signal Process..

[27]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[28]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[29]  Samir Attallah,et al.  The generalized Rayleigh's quotient adaptive noise subspace algorithm: a householder transformation-based implementation , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[30]  Y. Hua,et al.  Orthogonal Oja algorithm , 2000, IEEE Signal Processing Letters.

[31]  Arie Yeredor,et al.  Performance Analysis of the Strong Uncorrelating Transformation in Blind Separation of Complex-Valued Sources , 2012, IEEE Transactions on Signal Processing.

[32]  Jar-Ferr Yang,et al.  Adaptive eigensubspace algorithms for direction or frequency estimation and tracking , 1988, IEEE Trans. Acoust. Speech Signal Process..

[33]  Jian Li,et al.  Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[34]  Behrouz Farhang-Boroujeny,et al.  Fast LMS/Newton algorithms based on autoregressive modeling and their application to acoustic echo cancellation , 1997, IEEE Trans. Signal Process..

[35]  Jian Li,et al.  Iterative Adaptive Approaches to MIMO Radar Imaging , 2010, IEEE Journal of Selected Topics in Signal Processing.

[36]  Michael K. Ng,et al.  Approximate inverse-free preconditioners for Toeplitz matrices , 2011, Appl. Math. Comput..

[37]  Andreas Jakobsson,et al.  Coherence Spectrum Estimation From Nonuniformly Sampled Sequences , 2010, IEEE Signal Processing Letters.