Scalar tops and perturbed quadrupoles: probing fundamental physics with spin-precessing binaries

Parity violation in the gravitational interaction has an important impact on fundamental observables and the evolution of the universe. We here investigate for the first time our ability to probe the parity violating nature of the gravitational interaction in modified theories of gravity using gravitational waves from spin-precessing binaries. Focusing on dynamical Chern–Simons gravity, we derive the spin-precession equations, calculate the gravitational waves emitted by spin-precessing, quasi-circular black hole binaries and estimate the level to which the theory could be constrained with future gravitational wave observations.

[1]  Duncan A. Brown,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2020, Computing in Science & Engineering.

[2]  B. P. Abbott,et al.  Erratum: Binary Black Hole Mergers in the First Advanced LIGO Observing Run [Phys. Rev. X 6 , 041015 (2016)] , 2018, Physical Review X.

[3]  J. Bustillo,et al.  Potential observations of false deviations from general relativity in gravitational wave signals from binary black holes , 2018, Physical Review D.

[4]  N. Yunes,et al.  Gravitational wave probes of parity violation in compact binary coalescences , 2017, 1712.01853.

[5]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[6]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[7]  M. Scheel,et al.  Numerical binary black hole mergers in dynamical Chern-Simons gravity: Scalar field , 2017, 1705.07924.

[8]  K. Chatziioannou,et al.  Constructing gravitational waves from generic spin-precessing compact binary inspirals , 2017, 1703.03967.

[9]  Takahiro Tanaka,et al.  Spin-precessing black hole binaries in dynamical Chern-Simons gravity , 2017, Physical Review D.

[10]  K. Chatziioannou,et al.  Analytic Gravitational Waveforms for Generic Precessing Binary Inspirals. , 2016, Physical review letters.

[11]  B. A. Boom,et al.  Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model , 2016, 1606.01210.

[12]  Takahiro Tanaka,et al.  Erratum: Isolated and binary neutron stars in dynamical Chern-Simons gravity [Phys. Rev. D 87, 084058 (2013)] , 2016 .

[13]  Takahiro Tanaka,et al.  Erratum: Gravitational Waves from Quasicircular Black-Hole Binaries in Dynamical Chern-Simons Gravity [Phys. Rev. Lett. 109, 251105 (2012)]. , 2016, Physical review letters.

[14]  F. Pretorius,et al.  Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226 , 2016, 1603.08955.

[15]  Takahiro Tanaka,et al.  Erratum: Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity (Physical Review D - Particles, Fields, Gravitation and Cosmology (2012) 85 (064022)) , 2016 .

[16]  R. O’Shaughnessy,et al.  Effective potentials and morphological transitions for binary black hole spin precession. , 2014, Physical review letters.

[17]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[18]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[19]  E. Ochsner,et al.  A more effective coordinate system for parameter estimation of precessing compact binaries from gravitational waves , 2014, 1404.7070.

[20]  K. Chatziioannou,et al.  SPIN-PRECESSION: BREAKING THE BLACK HOLE–NEUTRON STAR DEGENERACY , 2014, 1402.3581.

[21]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[22]  S. Fairhurst,et al.  Degeneracy between mass and spin in black-hole-binary waveforms , 2012, 1211.0546.

[23]  Takahiro Tanaka,et al.  Gravitational waves from quasicircular black-hole binaries in dynamical Chern-Simons gravity. , 2012, Physical review letters.

[24]  Takahiro Tanaka,et al.  Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity , 2012 .

[25]  Yanbei Chen,et al.  Slowly-rotating stars and black holes in dynamical Chern-Simons gravity , 2011, 1110.5329.

[26]  H. Pfeiffer,et al.  Geometric approach to the precession of compact binaries , 2011, 1110.2965.

[27]  Badr N. Alsuwaidan,et al.  Gravity Probe B: final results of a space experiment to test general relativity. , 2011, Physical review letters.

[28]  J. Steinhoff Canonical formulation of spin in general relativity , 2011, 1106.4203.

[29]  P. Schmidt,et al.  Tracking the precession of compact binaries from their gravitational-wave signal , 2010, 1012.2879.

[30]  P. Ajith,et al.  Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries , 2010, 1005.3306.

[31]  V. Cardoso,et al.  Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity , 2010, 1004.4007.

[32]  N. Yunes,et al.  Chern-Simons Modified General Relativity , 2009, 0907.2562.

[33]  C. Will,et al.  Bounding the mass of the graviton with gravitational waves: Effect of spin precessions in massive black hole binaries , 2009, 0906.3602.

[34]  Duncan A. Brown,et al.  Model waveform accuracy standards for gravitational wave data analysis , 2008, 0809.3844.

[35]  É. Racine Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction , 2008, 0803.1820.

[36]  L. Finn,et al.  Gravitational-wave probe of effective quantum gravity , 2007, 0712.2542.

[37]  R. Lang,et al.  Erratum: Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession [Phys. Rev. D 74, 122001 (2006)] , 2007 .

[38]  R. Lang,et al.  Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession , 2006, gr-qc/0608062.

[39]  E. C. Pavlis,et al.  A confirmation of the general relativistic prediction of the Lense–Thirring effect , 2004, Nature.

[40]  M. M. Sheikh-Jabbari,et al.  Leptogenesis from gravity waves in models of inflation. , 2004, Physical review letters.

[41]  R. Jackiw,et al.  Chern-Simons modification of general relativity , 2003, gr-qc/0308071.

[42]  A. Vecchio LISA observations of rapidly spinning massive black hole binary systems , 2003, astro-ph/0304051.

[43]  T. Damour Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.

[44]  M. Kamionkowski,et al.  Cosmological signature of new parity violating interactions , 1998, astro-ph/9812088.

[45]  J. Pérez-Mercader,et al.  Test of general relativity and measurement of the lense-thirring effect with two earth satellites , 1998, Science.

[46]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[47]  B. A. Boom,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[48]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[49]  H. Kleinert,et al.  On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories , 1996 .