Evolutionary modifications in human brain connectivity associated with schizophrenia

See Vértes and Seidlitz (doi:10.1093/brain/awz353) for a scientific commentary on this article. Is schizophrenia a by-product of human brain evolution? By comparing the human and chimpanzee connectomes, van den Heuvel et al. demonstrate that connections unique to the human brain show greater involvement in schizophrenia pathology. Modifications in service of higher-order brain functions may have rendered the brain more vulnerable to dysfunction.

[1]  D. J. Ardesch,et al.  Genetic mapping and evolutionary analysis of human-expanded cognitive networks , 2019, Nature Communications.

[2]  Martijn P. van den Heuvel,et al.  Multiscale Neuroscience of Psychiatric Disorders , 2019, Biological Psychiatry.

[3]  O. Sporns,et al.  A cross-disorder connectome landscape of brain dysconnectivity , 2019, Nature Reviews Neuroscience.

[4]  A. Griffa,et al.  Connectome-Based Patterns of First-Episode Medication-Naïve Patients With Schizophrenia. , 2019, Schizophrenia bulletin.

[5]  Lianne H. Scholtens,et al.  Evolutionary expansion of connectivity between multimodal association areas in the human brain compared with chimpanzees , 2019, Proceedings of the National Academy of Sciences.

[6]  S. Djurovic,et al.  Genome-wide analysis reveals extensive genetic overlap between schizophrenia, bipolar disorder, and intelligence , 2019, Molecular Psychiatry.

[7]  R. Ophoff,et al.  The characteristics of psychotic features in bipolar disorder , 2018, Psychological Medicine.

[8]  Tilo Kircher,et al.  Neurobiology of the major psychoses: a translational perspective on brain structure and function—the FOR2107 consortium , 2018, European Archives of Psychiatry and Clinical Neuroscience.

[9]  R. Ophoff,et al.  Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders , 2018, Nature Human Behaviour.

[10]  R. Beninger,et al.  Obsessive-compulsive disorder: Insights from animal models , 2017, Neuroscience & Biobehavioral Reviews.

[11]  René S. Kahn,et al.  Connectome Disconnectivity and Cortical Gene Expression in Patients With Schizophrenia , 2017, Biological Psychiatry.

[12]  Daniel P. Kennedy,et al.  Enhancing studies of the connectome in autism using the autism brain imaging data exchange II , 2017, Scientific Data.

[13]  V. Arolt,et al.  A voxel‐based diffusion tensor imaging study in unipolar and bipolar depression , 2017, Bipolar disorders.

[14]  S. Djurovic,et al.  Probing the Association between Early Evolutionary Markers and Schizophrenia , 2017, PloS one.

[15]  Leonardo L. Gollo,et al.  Connectome sensitivity or specificity: which is more important? , 2016, NeuroImage.

[16]  M. Bozzali,et al.  Network-Based Substrate of Cognitive Reserve in Alzheimer's Disease. , 2016, Journal of Alzheimer's disease : JAD.

[17]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[18]  Soher Balkhy,et al.  Mutations in Human Accelerated Regions Disrupt Cognition and Social Behavior , 2016, Cell.

[19]  M. P. van den Heuvel,et al.  Connectomics-based structural network alterations in obsessive-compulsive disorder , 2016, Translational psychiatry.

[20]  A. Iriki,et al.  Single-neuron and genetic correlates of autistic behavior in macaque , 2016, Science Advances.

[21]  Andrew Zalesky,et al.  White Matter Disruptions in Schizophrenia Are Spatially Widespread and Topologically Converge on Brain Network Hubs , 2016, Schizophrenia bulletin.

[22]  René S. Kahn,et al.  Associated Microscale Spine Density and Macroscale Connectivity Disruptions in Schizophrenia , 2016, Biological Psychiatry.

[23]  Ole A. Andreassen,et al.  Genetic Markers of Human Evolution Are Enriched in Schizophrenia , 2016, Biological Psychiatry.

[24]  A. Friederici Evolution of the neural language network , 2016, Psychonomic bulletin & review.

[25]  D. V. van Essen,et al.  Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates , 2016, PLoS biology.

[26]  Olaf Sporns,et al.  Comparative Connectomics , 2016, Trends in Cognitive Sciences.

[27]  C. Spencer,et al.  A contribution of novel CNVs to schizophrenia from a genome-wide study of 41,321 subjects: CNV Analysis Group and the Schizophrenia Working Group of the Psychiatric Genomics Consortium , 2016, bioRxiv.

[28]  R. Ophoff,et al.  Brain network analysis reveals affected connectome structure in bipolar I disorder , 2016, Human brain mapping.

[29]  David B. Keator,et al.  SchizConnect: Mediating neuroimaging databases on schizophrenia and related disorders for large-scale integration , 2016, NeuroImage.

[30]  K. Lim,et al.  Longitudinal changes in white matter microstructure after heavy cannabis use , 2015, Developmental Cognitive Neuroscience.

[31]  H. Nicolini,et al.  Abnormal white matter integrity in antipsychotic-naïve first-episode psychosis patients assessed by a DTI principal component analysis , 2015, Schizophrenia Research.

[32]  M. Breakspear,et al.  The connectomics of brain disorders , 2015, Nature Reviews Neuroscience.

[33]  K. Pollard,et al.  Genomic and network patterns of schizophrenia genetic variation in human evolutionary accelerated regions. , 2015, Molecular biology and evolution.

[34]  J. Thiran,et al.  Characterizing the connectome in schizophrenia with diffusion spectrum imaging , 2015, Human brain mapping.

[35]  Vince D. Calhoun,et al.  Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia , 2014, NeuroImage.

[36]  Torsten Rohlfing,et al.  White matter microstructural recovery with abstinence and decline with relapse in alcohol dependence interacts with normal ageing: a controlled longitudinal DTI study. , 2014, The lancet. Psychiatry.

[37]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[38]  Andrew Zalesky,et al.  Disruption of structure–function coupling in the schizophrenia connectome , 2014, NeuroImage: Clinical.

[39]  Michel A. Hofman,et al.  Evolution of the human brain: when bigger is better , 2014, Front. Neuroanat..

[40]  A. Fornito,et al.  Brain Networks in Schizophrenia , 2014, Neuropsychology Review.

[41]  M. Filippi,et al.  Patterns of Brain Structural Changes in First-Contact, Antipsychotic Drug-Naïve Patients with Schizophrenia , 2014, American Journal of Neuroradiology.

[42]  R. Adolphs,et al.  Toward a Neural Basis for Social Behavior , 2013, Neuron.

[43]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[44]  Matthew F. Glasser,et al.  Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography , 2013, NeuroImage.

[45]  M. Yücel,et al.  A systematic review of diffusion weighted MRI studies of white matter microstructure in adolescent substance users , 2013, Neuroscience & Biobehavioral Reviews.

[46]  Wiepke Cahn,et al.  Altered white matter connectivity in never‐medicated patients with schizophrenia , 2013, Human brain mapping.

[47]  Ezequiel Mikulan,et al.  The anterior cingulate cortex: an integrative hub for human socially-driven interactions , 2013, Front. Neurosci..

[48]  M. Daly,et al.  Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis , 2013, The Lancet.

[49]  Martijn P. van den Heuvel,et al.  Estimating false positives and negatives in brain networks , 2013, NeuroImage.

[50]  Edward T. Bullmore,et al.  Schizophrenia, neuroimaging and connectomics , 2012, NeuroImage.

[51]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[52]  Kevin E. Langergraber,et al.  Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution , 2012, Proceedings of the National Academy of Sciences.

[53]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[54]  Kenneth Hugdahl,et al.  Impaired cognitive inhibition in schizophrenia: A meta-analysis of the Stroop interference effect , 2011, Schizophrenia Research.

[55]  J. Rilling,et al.  Continuity, Divergence, and the Evolution of Brain Language Pathways , 2011, Front. Evol. Neurosci..

[56]  Russell A. Poldrack,et al.  Large-scale automated synthesis of human functional neuroimaging data , 2011, Nature Methods.

[57]  T. Egner,et al.  Emotional processing in anterior cingulate and medial prefrontal cortex , 2011, Trends in Cognitive Sciences.

[58]  R. Kahn,et al.  Aberrant Frontal and Temporal Complex Network Structure in Schizophrenia: A Graph Theoretical Analysis , 2010, The Journal of Neuroscience.

[59]  E. Bora,et al.  Neurobiology of human affiliative behaviour: implications for psychiatric disorders , 2009, Current Opinion in Psychiatry.

[60]  M. E. Shenton,et al.  Reduced interhemispheric connectivity in schizophrenia-tractography based segmentation of the corpus callosum , 2008, Schizophrenia Research.

[61]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[62]  Evelyn C. Ferstl,et al.  The extended language network: A meta‐analysis of neuroimaging studies on text comprehension , 2008, Human brain mapping.

[63]  Timothy E. J. Behrens,et al.  The evolution of the arcuate fasciculus revealed with comparative DTI , 2008, Nature Neuroscience.

[64]  Walter Schneider,et al.  The cognitive control network: Integrated cortical regions with dissociable functions , 2007, NeuroImage.

[65]  J. Burns The Descent of Madness: Evolutionary Origins of Psychosis and the Social Brain , 2007 .

[66]  N. Craddock,et al.  The genetics of schizophrenia and bipolar disorder: dissecting psychosis , 2005, Journal of Medical Genetics.

[67]  F. Aboitiz,et al.  Schizophrenia is a disease of general connectivity more than a specifically “social brain” network , 2004, Behavioral and Brain Sciences.

[68]  R. Hoffman,et al.  Auditory hallucinations, network connectivity, and schizophrenia , 2004, Behavioral and Brain Sciences.

[69]  A. Wright,et al.  Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[71]  Akira Sawa,et al.  Schizophrenia: Diverse Approaches to a Complex Disease , 2002, Science.

[72]  D. Siscovick,et al.  Alcohol Consumption and Subclinical Findings on Magnetic Resonance Imaging of the Brain in Older Adults: The Cardiovascular Health Study , 2001, Stroke.

[73]  T. Insel,et al.  Differential expansion of neural projection systems in primate brain evolution. , 1999, Neuroreport.

[74]  T. Crow Is schizophrenia the price that Homo sapiens pays for language? , 1997, Schizophrenia Research.

[75]  N C Andreasen,et al.  Ventricular enlargement in schizophrenia: relationship to positive and negative symptoms. , 1982, The American journal of psychiatry.

[76]  A. Hamel,et al.  Models of stress in nonhuman primates and their relevance for human psychopathology and endocrine dysfunction. , 2014, ILAR journal.

[77]  Kristine Coleman,et al.  Assessing anxiety in nonhuman primates. , 2014, ILAR journal.

[78]  Cameron S Carter,et al.  Cognitive Control Deficits in Schizophrenia: Mechanisms and Meaning , 2011, Neuropsychopharmacology.