On the Non-Planarity of a Random Subgraph

Let G be a finite graph with minimum degree r. Form a random subgraph Gp of G by taking each edge of G into Gp independently and with probability p. We prove that for any constant ǫ > 0, if p = 1+ǫ r , then Gp is non-planar with probability approaching 1 as r grows. This generalizes classical results on planarity of binomial random graphs.

[1]  Daniela Kühn,et al.  Minors in random regular graphs , 2008, Random Struct. Algorithms.

[2]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[3]  Wolfgang Mader Subdivisions of a Graph of Maximal Degree n + 1 in Graphs of Average Degree and Large Girth , 2001, Comb..

[4]  Benny Sudakov,et al.  Long paths and cycles in random subgraphs of graphs with large minimum degree , 2012, Random Struct. Algorithms.

[5]  B. Bollobás The evolution of random graphs , 1984 .

[6]  Daniela Kühn,et al.  Minors in graphs of large girth , 2003, Random Struct. Algorithms.

[7]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[8]  Tomasz Luczak,et al.  The chromatic number of random graphs at the double-jump threshold , 1989, Comb..

[9]  M. Noy,et al.  On the probability of planarity of a random graph near the critical point , 2012, 1204.3376.

[10]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[11]  Daniela Kühn,et al.  The order of the largest complete minor in a random graph , 2008 .

[12]  B. Sudakov,et al.  Minors in Expanding Graphs , 2007, 0707.0133.

[13]  Benny Sudakov,et al.  The phase transition in random graphs: A simple proof , 2012, Random Struct. Algorithms.

[14]  B. Pittel,et al.  The structure of a random graph at the point of the phase transition , 1994 .

[15]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[16]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.

[17]  Béla Bollobás,et al.  Random Graphs , 1985 .