A Framework for Adaptive Multiscale Methods for Elliptic Problems

We describe a projection framework for developing adaptive multiscale methods for computing approximate solutions to elliptic boundary value problems. The framework is consistent with homogenizatio...

[1]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[2]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[3]  Todd Arbogast,et al.  Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..

[4]  B. Engquist,et al.  Wavelet-Based Numerical Homogenization with Applications , 2002 .

[5]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[6]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[7]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[8]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[9]  Todd Arbogast,et al.  Numerical Subgrid Upscaling of Two-Phase Flow in Porous Media , 2000 .

[10]  J. Lambers A SPECIALIZED UPSCALING METHOD FOR ADAPTIVE GRIDS: TIGHT INTEGRATION OF LOCAL-GLOBAL UPSCALING AND ADAPTIVITY LEADS TO ACCURATE SOLUTION OF FLOW IN HETEROGENEOUS FORMATIONS , 2006 .

[11]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[12]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[13]  Grégoire Allaire,et al.  A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..

[14]  M. Golubitsky,et al.  Singularities and Groups in Bifurcation Theory: Volume I , 1984 .

[15]  Doron Levy,et al.  On Wavelet-Based Numerical Homogenization , 2005, Multiscale Model. Simul..

[16]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[17]  H. Owhadi,et al.  Metric‐based upscaling , 2007 .

[18]  Danping Yang,et al.  A Framework for Modeling Subgrid Effects for Two-Phase Flows in Porous Media , 2006, Multiscale Model. Simul..

[19]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[20]  Xingye Yue,et al.  Numerical methods for multiscale elliptic problems , 2006, J. Comput. Phys..

[21]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[22]  Olof Runborg,et al.  Projection Generated Homogenization , 2002 .

[23]  F. Brezzi Interacting with the subgrid world , 2005 .

[24]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[25]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[26]  Todd Arbogast,et al.  Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..

[27]  M. Avellaneda,et al.  Finite difference approximations for partial differential equations with rapidly oscillating coefficients , 1991 .

[28]  THOMAS Y. HOU,et al.  MULTISCALE ANALYSIS AND COMPUTATION FOR THE 3D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS , .

[29]  S. Molchanov Lectures on random media , 1994 .

[30]  Grégoire Allaire,et al.  The mathematical modeling of composite materials , 2002 .

[31]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.