Investigation of proper time and inter-satellite clock difference using general relativity theory

[1]  A. Lang,et al.  Heliotropic orbits at asteroid 99942 Apophis: Considering solar radiation pressure and zonal gravity perturbations , 2022, Acta Astronautica.

[2]  X. Zhan,et al.  Constraint navigation filter for space vehicle autonomous positioning with deficient GNSS measurements , 2021, Aerospace Science and Technology.

[3]  R. Chhabra,et al.  Multi-impulse smooth trajectory design for long-range rendezvous with an orbiting target using multi-objective non-dominated sorting genetic algorithm , 2021, Aerospace Science and Technology.

[4]  M. Soffel,et al.  A new post-Newtonian long-term precession model for the Earth , 2021 .

[5]  J. Kouba Testing of general relativity with two Galileo satellites in eccentric orbits , 2021, GPS Solutions.

[6]  Huijie Song,et al.  Combining TWSTFT and GPS PPP using a Kalman filter , 2021, GPS Solutions.

[7]  I. Sesia,et al.  Time–frequency analysis of the Galileo satellite clocks: looking for the J2 relativistic effect and other periodic variations , 2021, GPS Solutions.

[8]  C. Le Poncin-Lafitte,et al.  ACES/PHARAO: high-performance space-to-ground and ground-to-ground clock comparison for fundamental physics , 2021, GPS Solutions.

[9]  Jian-Wei Pan,et al.  An integrated space-to-ground quantum communication network over 4,600 kilometres , 2021, Nature.

[10]  M. Leonardi,et al.  Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors. , 2020, Physical review letters.

[11]  M. Fejer,et al.  A cryogenic silicon interferometer for gravitational-wave detection , 2020, Classical and Quantum Gravity.

[12]  C. Caprini,et al.  Detecting gravitational waves from cosmological phase transitions with LISA: an update , 2019, Journal of Cosmology and Astroparticle Physics.

[13]  D. Englund,et al.  Experimental demonstration of memory-enhanced quantum communication , 2019, Nature.

[14]  H. Ahmad,et al.  Mode-locking in Er-doped fiber laser with reduced graphene oxide on a side-polished fiber as saturable absorber , 2019, Optical Fiber Technology.

[15]  Cheng-Gang Shao,et al.  Relativistic tidal effects on clock-comparison experiments , 2019, Classical and Quantum Gravity.

[16]  Huaguo Zang,et al.  In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms , 2018, Nature Communications.

[17]  Eric A. Burt,et al.  Using the Deep Space Atomic Clock for Navigation and Science , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[18]  C. Le Poncin-Lafitte,et al.  Atomic clock ensemble in space (ACES) data analysis , 2017, 1709.06491.

[19]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[20]  M. Zucco,et al.  Geodesy and metrology with a transportable optical clock , 2017, 1705.04089.

[21]  Pei Chen,et al.  Precise Real-Time Navigation of LEO Satellites Using a Single-Frequency GPS Receiver and Ultra-Rapid Ephemerides , 2017, ArXiv.

[22]  L. Sonderhouse,et al.  A Fermi-degenerate three-dimensional optical lattice clock , 2017, Science.

[23]  Fritz Riehle,et al.  Optical clock networks , 2017, Nature Photonics.

[24]  U. Sterr,et al.  Transportable Optical Lattice Clock with 7×10^{-17} Uncertainty. , 2016, Physical review letters.

[25]  Y. Kuroishi,et al.  Geopotential measurements with synchronously linked optical lattice clocks , 2016, Nature Photonics.

[26]  M. Schioppo,et al.  Ultrastable optical clock with two cold-atom ensembles , 2016, Nature Photonics.

[27]  Uwe Sterr,et al.  A transportable optical lattice clock , 2016 .

[28]  P. Wolf Next Generation Clock Networks , 2016 .

[29]  N. Yu,et al.  General relativistic observables for the ACES experiment , 2015, Physical Review D.

[30]  E. Bookjans,et al.  A clock network for geodesy and fundamental science , 2015, Nature Communications.

[31]  Fabio Stefani,et al.  Cascaded optical fiber link using the internet network for remote clocks comparison. , 2015, Optics express.

[32]  Andreas Bauch,et al.  Time and frequency comparisons using radiofrequency signals from satellites , 2015 .

[33]  Gesine Grosche,et al.  Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link , 2015, 2014 IEEE International Frequency Control Symposium (FCS).

[34]  Gesine Grosche,et al.  Brillouin amplification supports 1 × 10 − 20 uncertainty in optical frequency transfer over 1400 km of underground fiber , 2015, 1504.01567.

[35]  Felix Perosanz,et al.  1 × 10−16 frequency transfer by GPS PPP with integer ambiguity resolution , 2015 .

[36]  Jun Ye,et al.  Optical atomic clocks , 2014, 1407.3493.

[37]  Slava G. Turyshev,et al.  General relativistic observables of the GRAIL mission , 2012, Physical Review D.

[38]  A. Bauch,et al.  Time transfer through optical fibres over a distance of 73 km with an uncertainty below 100 ps , 2012, 1209.4467.

[39]  R. Nelson,et al.  Relativistic time transfer in the vicinity of the Earth and in the solar system , 2011 .

[40]  D. Wineland,et al.  Optical Clocks and Relativity , 2010, Science.

[41]  Gerard Petit,et al.  Relativistic theory for time comparisons: a review , 2005 .

[42]  P. K. Seidelmann,et al.  The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement , 2003, astro-ph/0303376.

[43]  Neil Ashby,et al.  Relativity in the Global Positioning System , 2003, Living reviews in relativity.

[44]  Sergei A. Klioner,et al.  The problem of clock synchronization: A relativistic approach , 1992 .

[45]  D. Korobko,et al.  Harmonic mode-locking fiber ring laser with a pulse repetition rate up to 12 GHz , 2021 .

[46]  Lei Chen,et al.  A new approach of orbit determination for LEO satellites based on optical tracking of GEO satellites , 2019, Aerospace Science and Technology.

[47]  Shuo Tang,et al.  基于广义相对论的轨道摄动卫星皮秒计时与时间比对研究 , 2022, SCIENTIA SINICA Technologica.