A Stochastic Multi-layer Algorithm for Semi-discrete Optimal Transport with Applications to Texture Synthesis and Style Transfer

This paper investigates a new stochastic algorithm to approximate semi-discrete optimal transport for large-scale problem, i.e., in high dimension and for a large number of points. The proposed technique relies on a hierarchical decomposition of the target discrete distribution and the transport map itself. A stochastic optimization algorithm is derived to estimate the parameters of the corresponding multi-layer weighted nearest neighbor model. This model allows for fast evaluation during synthesis and training, for which it exhibits faster empirical convergence. Several applications to patch-based image processing are investigated: texture synthesis, texture inpainting, and style transfer. The proposed models compare favorably to the state of the art, either in terms of image quality, computation time, or regarding the number of parameters. Additionally, they do not require any pixel-based optimization or training on a large dataset of natural images.

[1]  Patrick Pérez,et al.  Non-Local Patch-Based Image Inpainting , 2017, Image Process. Line.

[2]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[4]  Carola-Bibiane Schönlieb,et al.  Imaging with Kantorovich-Rubinstein Discrepancy , 2014, SIAM J. Imaging Sci..

[5]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[6]  Jean-Michel Morel,et al.  A Conditional Multiscale Locally Gaussian Texture Synthesis Algorithm , 2016, Journal of Mathematical Imaging and Vision.

[7]  Jérémie Bigot,et al.  Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures , 2018, The Annals of Statistics.

[8]  Bernhard Schmitzer,et al.  Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems , 2016, SIAM J. Sci. Comput..

[9]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[10]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[11]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[12]  Julien Rabin,et al.  Removing Artefacts From Color and Contrast Modifications , 2011, IEEE Transactions on Image Processing.

[13]  Andrea Vedaldi,et al.  Deep Image Prior , 2017, International Journal of Computer Vision.

[14]  Julien Rabin,et al.  Convex Color Image Segmentation with Optimal Transport Distances , 2015, SSVM.

[15]  Anand Rangarajan,et al.  The Softassign Procrustes Matching Algorithm , 1997, IPMI.

[16]  Alan L. Yuille,et al.  The invisible hand algorithm: Solving the assignment problem with statistical physics , 1994, Neural Networks.

[17]  Bruno Galerne,et al.  A Texture Synthesis Model Based on Semi-Discrete Optimal Transport in Patch Space , 2018, SIAM J. Imaging Sci..

[18]  Bernhard Schmitzer,et al.  A Sparse Multiscale Algorithm for Dense Optimal Transport , 2015, Journal of Mathematical Imaging and Vision.

[19]  Gabriel Peyré,et al.  Computational Optimal Transport , 2018, Found. Trends Mach. Learn..

[20]  Quentin Mérigot,et al.  A Newton algorithm for semi-discrete optimal transport , 2016, ArXiv.

[21]  Daniel Cohen-Or,et al.  Deep Correlations for Texture Synthesis , 2017, ACM Trans. Graph..

[22]  Julien Rabin,et al.  A Statistical Approach to the Matching of Local Features , 2009, SIAM J. Imaging Sci..

[23]  Steven Haker,et al.  Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..

[24]  Alain Trouvé,et al.  Fast and Scalable Optimal Transport for Brain Tractograms , 2019, MICCAI.

[25]  Matthias Bethge,et al.  ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness , 2018, ICLR.

[26]  Julien Rabin,et al.  A Fast Multi-layer Approximation to Semi-discrete Optimal Transport , 2019, SSVM.

[27]  David Salesin,et al.  Image Analogies , 2001, SIGGRAPH.

[28]  Jun Kitagawa An iterative scheme for solving the optimal transportation problem , 2012 .

[29]  Leon A. Gatys,et al.  What does it take to generate natural textures? , 2017, ICLR.

[30]  Stéphane Mallat,et al.  Solving Inverse Problems With Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity , 2010, IEEE Transactions on Image Processing.

[31]  C. Villani Topics in Optimal Transportation , 2003 .

[32]  Gang Liu,et al.  Texture synthesis through convolutional neural networks and spectrum constraints , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[33]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[34]  Bruno Galerne,et al.  Texture Inpainting Using Efficient Gaussian Conditional Simulation , 2017, SIAM J. Imaging Sci..

[35]  David Tschumperlé,et al.  Exemplar-Based Inpainting: Technical Review and New Heuristics for Better Geometric Reconstructions , 2015, IEEE Transactions on Image Processing.

[36]  Julie Delon Midway Image Equalization , 2004, Journal of Mathematical Imaging and Vision.

[37]  Adam M. Oberman,et al.  NUMERICAL METHODS FOR MATCHING FOR TEAMS AND WASSERSTEIN BARYCENTERS , 2014, 1411.3602.

[38]  Nicola Pezzotti,et al.  Differentiable Image Parameterizations , 2018, Distill.

[39]  Gui-Song Xia,et al.  Synthesizing and Mixing Stationary Gaussian Texture Models , 2014, SIAM J. Imaging Sci..

[40]  François-Xavier Vialard,et al.  Optimal Transport for Diffeomorphic Registration , 2017, MICCAI.

[41]  Yann Gousseau,et al.  Wasserstein Loss for Image Synthesis and Restoration , 2016, SIAM J. Imaging Sci..

[42]  Hang Zhang,et al.  Multi-style Generative Network for Real-time Transfer , 2017, ECCV Workshops.

[43]  Cohen-OrDaniel,et al.  Deep Correlations for Texture Synthesis , 2017 .

[44]  T. Glimm,et al.  Iterative Scheme for Solving Optimal Transportation Problems Arising in Reflector Design , 2011, 1110.3061.

[45]  Franz Aurenhammer,et al.  Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.

[46]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[47]  B. Lévy A Numerical Algorithm for L2 Semi-Discrete Optimal Transport in 3D , 2014, 1409.1279.

[48]  Ming-Hsuan Yang,et al.  Diversified Texture Synthesis with Feed-Forward Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Gabriel Peyré,et al.  Optimal Transport with Proximal Splitting , 2013, SIAM J. Imaging Sci..

[50]  Jose Luis Lisani,et al.  Image Color Cube Dimensional Filtering and Visualization , 2011, Image Process. Line.

[51]  Alexei A. Efros,et al.  Image quilting for texture synthesis and transfer , 2001, SIGGRAPH.

[52]  Nicolas Papadakis,et al.  A Variational Model for Histogram Transfer of Color Images , 2011, IEEE Transactions on Image Processing.

[53]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[54]  M. Rumpf,et al.  A generalized model for optimal transport of images including dissipation and density modulation , 2015, 1504.01988.

[55]  Gabriel Peyré,et al.  Stochastic Optimization for Large-scale Optimal Transport , 2016, NIPS.

[56]  Gabriele Steidl,et al.  Transport Between RGB Images Motivated by Dynamic Optimal Transport , 2015, Journal of Mathematical Imaging and Vision.

[57]  Michael Elad,et al.  Style Transfer Via Texture Synthesis , 2016, IEEE Transactions on Image Processing.

[58]  F. Santambrogio Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .

[59]  Mauro Maggioni,et al.  Multiscale Strategies for Computing Optimal Transport , 2017, J. Mach. Learn. Res..

[60]  Lei Zhu,et al.  Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.

[61]  Andrea Vedaldi,et al.  Texture Networks: Feed-forward Synthesis of Textures and Stylized Images , 2016, ICML.

[62]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[63]  Neus Sabater,et al.  Split and Match: Example-Based Adaptive Patch Sampling for Unsupervised Style Transfer , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  Patrick Pérez,et al.  Video Inpainting of Complex Scenes , 2014, SIAM J. Imaging Sci..

[65]  Adam M. Oberman,et al.  An efficient linear programming method for Optimal Transportation , 2015, 1509.03668.

[66]  Andrea Vedaldi,et al.  Improved Texture Networks: Maximizing Quality and Diversity in Feed-Forward Stylization and Texture Synthesis , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Leon A. Gatys,et al.  Texture Synthesis Using Convolutional Neural Networks , 2015, NIPS.