9th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2014, May 21-23, 2014, Singapore

Bell experiments can be used to generate private random numbers. An ideal Bell experiment would involve measuring a state of two maximally entangled qubits, but in practice any state produced is subject to noise. Here we consider how the techniques presented in [1] and [2], i. e. using an optimized Bell inequality, and taking advantage of the fact that the device provider is not our adversary, can be used to improve the rate of randomness generation in Bell-like tests performed on singlet states subject to either white or dephasing noise. 1998 ACM Subject Classification J.2 Physical Sciences and Engineering

[1]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[2]  H. Umegaki CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA, II , 1954 .

[3]  A. Rényi On Measures of Entropy and Information , 1961 .

[4]  S. Dharmadhikari Sufficient Conditions for a Stationary Process to be a Function of a Finite Markov Chain , 1963 .

[5]  R. Kálmán Irreducible realizations and the degree of a rational matrix. , 1965 .

[6]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[7]  R. V. Erickson Functions of Markov Chains , 1970 .

[8]  T. Andô Concavity of certain maps on positive definite matrices and applications to Hadamard products , 1979 .

[9]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[10]  J. Hammersley A generalization of McDiarmid's theorem for mixed Bernoulli percolation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[12]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[13]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[14]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[15]  B. Tsirelson Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .

[16]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[17]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[18]  S. Amari,et al.  Identifiability of hidden markov processes and their minimum degrees of freedom , 1991 .

[19]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[20]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[21]  I. Csiszár Generalized Cutoff Rates and Renyi's Information Measures , 1993, Proceedings. IEEE International Symposium on Information Theory.

[22]  Daniel R. Simon On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[23]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[24]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[25]  H. Nagaoka,et al.  Strong converse theorems in the quantum information theory , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).

[26]  Andris Ambainis,et al.  Dense quantum coding and a lower bound for 1-way quantum automata , 1998, STOC '99.

[27]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[28]  Ran Raz,et al.  Exponential separation of quantum and classical communication complexity , 1999, STOC '99.

[29]  Cerf,et al.  Classical teleportation of a quantum Bit , 2000, Physical review letters.

[30]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[31]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[32]  M. Hayashi Asymptotics of quantum relative entropy from a representation theoretical viewpoint , 1997, quant-ph/9704040.

[33]  Andris Ambainis,et al.  Dense quantum coding and quantum finite automata , 2002, JACM.

[34]  G. Brassard,et al.  Quantum Communication Complexity , 2003 .

[35]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[36]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[37]  Ziv Bar-Yossef,et al.  Exponential separation of quantum and classical one-way communication complexity , 2004, STOC '04.

[38]  Dave Bacon,et al.  From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[39]  Rudy Raymond,et al.  (4,1)-Quantum random access coding does not exist—one qubit is not enough to recover one of four bits , 2006, quant-ph/0604061.

[40]  H. Nagaoka The Converse Part of The Theorem for Quantum Hoeffding Bound , 2006, quant-ph/0611289.

[41]  Raymond H. Putra,et al.  Unbounded-Error One-Way Classical and Quantum Communication Complexity , 2007, ICALP.

[42]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[43]  William Slofstra,et al.  Perfect Parallel Repetition Theorem for Quantum Xor Proof Systems , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[44]  Masahito Hayashi Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding , 2006, quant-ph/0611013.

[45]  Ronald de Wolf,et al.  A Hypercontractive Inequality for Matrix-Valued Functions with Applications to Quantum Computing and LDCs , 2007, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[46]  Ran Raz,et al.  Exponential Separation for One-Way Quantum Communication Complexity, with Applications to Cryptography , 2008, SIAM J. Comput..

[47]  Holger Boche,et al.  Classical Capacities of Compound and Averaged Quantum Channels , 2007, IEEE Transactions on Information Theory.

[48]  M. Wolf,et al.  Assessing quantum dimensionality from observable dynamics. , 2009, Physical review letters.

[49]  A. Broadbent,et al.  The GHZ State in Secret Sharing and Entanglement Simulation , 2008, 2009 Third International Conference on Quantum, Nano and Micro Technologies.

[50]  Christopher R. Laumann,et al.  Phase transitions and random quantum satisfiability , 2009, ArXiv.

[51]  Renato Portugal,et al.  Solutions to the Hidden Subgroup Problem on Some Metacyclic Groups , 2009, TCQ.

[52]  R. Spekkens,et al.  Preparation contextuality powers parity-oblivious multiplexing. , 2008, Physical review letters.

[53]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[54]  Anindya De,et al.  Near-optimal extractors against quantum storage , 2010, STOC '10.

[55]  Niel de Beaudrap,et al.  Ground states of unfrustrated spin Hamiltonians satisfy an area law , 2010, 1009.3051.

[56]  S. Wehner,et al.  The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics , 2010, Science.

[57]  Alexander Russell,et al.  Bounds on the Quantum Satisfiability Threshold , 2009, ICS.

[58]  V. Paulsen,et al.  Quotients, exactness, and nuclearity in the operator system category , 2010, 1008.2811.

[59]  K. Wiesner,et al.  Hidden Quantum Markov Models and non-adaptive read-out of many-body states , 2010, 1002.2337.

[60]  M. Pawłowski,et al.  Entanglement-assisted random access codes , 2009, 0906.0524.

[61]  N. Gisin,et al.  Simulation of Equatorial von Neumann Measurements on GHZ States Using Nonlocal Resources , 2009, 0908.2640.

[62]  Andrew M. Childs,et al.  Quantum algorithms for algebraic problems , 2008, 0812.0380.

[63]  Theory of Quantum Computation, Communication, and Cryptography , 2010, Lecture Notes in Computer Science.

[64]  N. Gisin,et al.  Quantifying the nonlocality of Greenberger-Horne-Zeilinger quantum correlations by a bounded communication simulation protocol. , 2011, Physical review letters.

[65]  Ronald de Wolf,et al.  Near-Optimal and Explicit Bell Inequality Violations , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[66]  George Cybenko,et al.  Learning Hidden Markov Models Using Nonnegative Matrix Factorization , 2008, IEEE Transactions on Information Theory.

[67]  Zhengfeng Ji,et al.  complete characterization of the ground-space structure of two-body frustration-free hamiltonians for qubits , 2010, 1010.2480.

[68]  V. Paulsen,et al.  Operator system quotients of matrix algebras and their tensor products , 2011, 1101.0790.

[69]  Bo'az Klartag,et al.  Quantum one-way communication can be exponentially stronger than classical communication , 2011, STOC '11.

[70]  Milán Mosonyi,et al.  On the Quantum Rényi Relative Entropies and Related Capacity Formulas , 2009, IEEE Transactions on Information Theory.

[71]  A. Winter,et al.  From Qubits to Hyperbits , 2011 .

[72]  Mathukumalli Vidyasagar,et al.  The complete realization problem for hidden Markov models: a survey and some new results , 2011, Math. Control. Signals Syst..

[73]  Ke Li,et al.  Second Order Asymptotics for Quantum Hypothesis Testing , 2012, ArXiv.

[74]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[75]  Hans Raj Tiwary,et al.  Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds , 2011, STOC '12.

[76]  Karoline Wiesner,et al.  Quantum mechanics can reduce the complexity of classical models , 2011, Nature Communications.

[77]  Diro,et al.  Structure of the probability distribution for the GHZ quantum state under local von Neumann measurements , 2012 .

[78]  M. Pawłowski,et al.  Semi-device-independent randomness certification usingn→1quantum random access codes , 2011, 1109.5259.

[79]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[80]  F. Hiai Concavity of certain matrix trace and norm functions. II , 2012, 1507.00853.

[81]  D. Burgarth,et al.  Quantum system identification. , 2011, Physical review letters.

[82]  Masahito Hayashi,et al.  A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.

[83]  Elliott H. Lieb,et al.  Monotonicity of a relative Rényi entropy , 2013, ArXiv.

[84]  N. Yamamoto,et al.  Systems identification for passive linear quantum systems: The transfer function approach , 2013, 52nd IEEE Conference on Decision and Control.

[85]  Serge Fehr,et al.  On quantum Renyi entropies: a new definition and some properties , 2013, ArXiv.

[86]  Rekha R. Thomas,et al.  Lifts of Convex Sets and Cone Factorizations , 2011, Math. Oper. Res..

[87]  Dong Yang,et al.  Strong converse for the classical capacity of entanglement-breaking channels , 2013, ArXiv.

[88]  Janis Noetzel,et al.  Hypothesis testing on invariant subspaces of the symmetric group: part I. Quantum Sanov's theorem and arbitrarily varying sources , 2014, ArXiv.

[89]  Milán Mosonyi,et al.  Quantum Hypothesis Testing and the Operational Interpretation of the Quantum Rényi Relative Entropies , 2013, ArXiv.

[90]  Salman Beigi Quantum Rényi Divergence Satisfies Data Processing Inequality , 2013, ArXiv.

[91]  D. Burgarth,et al.  Control of open quantum systems: case study of the central spin model , 2013, 1312.0160.

[92]  G. Grimmett,et al.  Percolation of finite clusters and infinite surfaces , 2013, Mathematical Proceedings of the Cambridge Philosophical Society.

[93]  Iordanis Kerenidis,et al.  Strong connections between quantum encodings, non-locality and quantum cryptography , 2013, 1304.0983.

[94]  N. Datta,et al.  A limit of the quantum Rényi divergence , 2013, 1308.5961.

[95]  D. Burgarth,et al.  Identifiability of Open Quantum Systems , 2014, 1401.5240.

[96]  C. Arenz Control of open quantum systems , 2016 .

[97]  H.,et al.  Convex Trace Functions and the Wigner-Yanase-Dyson Conjecture , 2022 .