A PDE approach to centroidal tessellations of domains

We introduce a class of systems of Hamilton-Jacobi equations that characterize critical points of functionals associated to centroidal tessellations of domains, i.e. tessellations where generators and centroids coincide, such as centroidal Voronoi tessellations and centroidal power diagrams. An appropriate version of the Lloyd algorithm, combined with a Fast Marching method on unstructured grids for the HamiltonJacobi equation, allows computing the solution of the system. We propose various numerical examples to illustrate the features of the technique. AMS-Subject Classification: 65K10, 49M05, 65D99, 35F21, 49N70.

[1]  D. Bourne,et al.  Laguerre tessellations and polycrystalline microstructures: a fast algorithm for generating grains of given volumes , 2019, Philosophical Magazine.

[2]  Qiang Du,et al.  Convergence of the Lloyd Algorithm for Computing Centroidal Voronoi Tessellations , 2006, SIAM J. Numer. Anal..

[3]  Yong-Jin Liu,et al.  Intrinsic Manifold SLIC: A Simple and Efficient Method for Computing Content-Sensitive Superpixels , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Laurent D. Cohen,et al.  Surface segmentation using geodesic centroidal tesselation , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[5]  Simone Cacace,et al.  A Mean Field Games Approach to Cluster Analysis , 2019, Applied Mathematics & Optimization.

[6]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[7]  David J. Buttler,et al.  Encyclopedia of Data Warehousing and Mining Second Edition , 2008 .

[8]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[9]  B. Lévy A Numerical Algorithm for L2 Semi-Discrete Optimal Transport in 3D , 2014, 1409.1279.

[10]  François Delarue,et al.  Probabilistic Theory of Mean Field Games with Applications I: Mean Field FBSDEs, Control, and Games , 2018 .

[11]  Jean-Luc Coron Quelques exemples de jeux à champ moyen , 2017 .

[12]  Steven Fortune,et al.  Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[13]  A GENERALIZED HOPF-LAX FORMULA: ANALYTICAL AND APPROXIMATIONS ASPECTS , 2008 .

[14]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[15]  M. Falcone,et al.  Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations , 2014 .

[16]  Mathieu Desbrun,et al.  Blue noise through optimal transport , 2012, ACM Trans. Graph..

[17]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[18]  D. P. Bourne,et al.  Centroidal Power Diagrams, Lloyd's Algorithm, and Applications to Optimal Location Problems , 2014, SIAM J. Numer. Anal..

[19]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[20]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[21]  Franz Aurenhammer,et al.  Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.

[22]  P. Lions,et al.  Mean field games , 2007 .

[23]  Shi-Qing Xin,et al.  Centroidal power diagrams with capacity constraints , 2016, ACM Trans. Graph..

[24]  J. Sethian,et al.  Fast methods for the Eikonal and related Hamilton- Jacobi equations on unstructured meshes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.