Leveraging Multi-Fidelity Models for Flexible Wing Systems

Abstract : This is the final report for the activities conducted at the University of Maryland during participation in the Collaborative Center in Multidisciplinary Sciences (CCMS) project. In this work, the investigators have primarily explored the suitability of computational tools to predict desirable micro-air-vehicle (MAV) designs. The use of computationally expensive high-fidelity tools such as direct numerical simulation is compared to that of moderate fidelity tools, such as the inexpensive unsteady vortex lattice method. An achievement of the project was the implementation of a high-fidelity fluid-structure interaction simulation code inside the FLASH framework. This tool permits the study of flapping wing systems with high fidelity in three dimensions.

[1]  S. Sane,et al.  Aerodynamic effects of flexibility in flapping wings , 2010, Journal of The Royal Society Interface.

[2]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[3]  T. Daniel,et al.  The Journal of Experimental Biology 206, 2989-2997 © 2003 The Company of Biologists Ltd , 2003 .

[4]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[5]  Gordon J. Berman,et al.  Energy-minimizing kinematics in hovering insect flight , 2007, Journal of Fluid Mechanics.

[6]  Ekkehard Ramm,et al.  Constraint Energy Momentum Algorithm and its application to non-linear dynamics of shells , 1996 .

[7]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[8]  Zhijin Wang,et al.  Oscillating Flexible Wings at Low Reynolds Numbers , 2013 .

[9]  Kathrin Abendroth,et al.  Nonlinear Finite Elements For Continua And Structures , 2016 .

[10]  Carlos E. S. Cesnik,et al.  Effects of flexibility on the aerodynamic performance of flapping wings , 2011, Journal of Fluid Mechanics.

[11]  B. Balachandran,et al.  Influence of flexibility on the aerodynamic performance of a hovering wing , 2009, Journal of Experimental Biology.

[12]  Oreste S. Bursi,et al.  The accuracy of the generalized-α method in the time integration of non-linear single- and two-DOF forced systems , 2006 .

[13]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[14]  Elias Balaras,et al.  A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies , 2008 .

[15]  P. Frank Pai,et al.  Nonlinear Modeling and Vibration Characterization of MAV Flapping Wings , 2009 .

[16]  Anthony N. Palazotto,et al.  A Structural Dynamic Analysis of a Manduca Sexta Forewing , 2010 .

[17]  Herbert Rc Modelling insect wings using the finite element method. , 2001 .

[18]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[19]  Anshu Dubey,et al.  Optimization of multigrid based elliptic solver for large scale simulations in the FLASH code , 2012, Concurr. Comput. Pract. Exp..

[20]  Julio C. Massa,et al.  Aerodinámica De Flujos Bidimensionales E Inestacionarios Dominados Por Verticidad. , 2006 .

[21]  Z. J. Wang,et al.  Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments , 2004, Journal of Experimental Biology.

[22]  Timothy Fitzgerald,et al.  Nonlinear Fluid-Structure Interactions in Flapping Wing Systems , 2013 .

[23]  Marcos Vanella,et al.  A Fluid Structure Interaction Strategy with Application to Low Reynolds Number Flapping Flight , 2010 .

[24]  R. Wootton FUNCTIONAL MORPHOLOGY OF INSECT WINGS , 1992 .

[25]  P. Bernard The hairpin vortex illusion , 2011 .

[26]  O. C. Zienkiewicz,et al.  An alpha modification of Newmark's method , 1980 .

[27]  M. Crisfield,et al.  Energy‐conserving and decaying Algorithms in non‐linear structural dynamics , 1999 .

[28]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[29]  Zhijin Wang,et al.  Low aspect ratio oscillating flexible wings at low Reynolds numbers , 2013 .

[30]  T. Daniel,et al.  The Journal of Experimental Biology 206, 2979-2987 © 2003 The Company of Biologists Ltd , 2022 .

[31]  Peter MacNeice,et al.  Paramesh: A Parallel Adaptive Mesh Refinement Community Toolkit , 2013 .

[32]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[33]  T. Daniel,et al.  Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta , 2003, Journal of Experimental Biology.

[34]  Sergio Preidikman,et al.  Numerical Simulations of Interactions Among Aerodynamics, Structural Dynamics, and Control Systems , 1998 .

[35]  A. Palazotto,et al.  The morphological characterization of the forewing of the Manduca sexta species for the application of biomimetic flapping wing micro air vehicles , 2012, Bioinspiration & biomimetics.

[36]  B. Balachandran,et al.  Flexible flapping systems: computational investigations into fluid-structure interactions , 2011, The Aeronautical Journal (1968).

[37]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[38]  T. Weis-Fogh Quick estimates of flight fitness in hovering animals , 1973 .

[39]  Oreste S. Bursi,et al.  The analysis of the Generalized-α method for non-linear dynamic problems , 2002 .

[40]  Brian T. Helenbrook,et al.  Proper orthogonal decomposition and incompressible flow: An application to particle modeling , 2007 .

[41]  J. H. Comstock,et al.  The Wings of Insects , 1898, The American Naturalist.