High energy resolution scintillators for nuclear nonproliferation applications

The detection of ionizing radiation is important in numerous applications related to national security ranging from the detection and identification of fissile materials to the imaging of cargo containers. A key performance criterion is the ability to reliably identify the specific gamma-ray signatures of radioactive elements, and energy resolution approaching 2% at 662 keV is required for this task. In this work, we present discovery and development of new high energy resolution scintillators for gamma-ray detection. The new ternary halide scintillators belong to the following compositional families: AM2X5:Eu, AMX3, and A2MX4:Eu (A = Cs, K; M = Ca, Sr, Ba; X = Br, I) as well as mixed elpasolites Cs2NaREBr3I3:Ce (RE = La, Y). Using thermal analysis, we confirmed their congruent melting and determined crystallization and melting points. Using the Bridgman technique, we grew 6, 12 and 22 mm diameter single crystals and optimized the Eu concentration to obtain the best scintillation performance. Pulse-height spectra under gamma-ray excitation were recorded in order to measure scintillation light output, energy resolution and light output nonproportionality. The KSr2I5:Eu 4% showed the best combination of excellent crystal quality obtained at fast pulling rates and high light output of ~95,000 photons/MeV with energy resolution of 2.4% at 662 keV.

[1]  B. Chakoumakos,et al.  Scintillation properties of Eu2+-doped KBa2I5 and K2BaI4 , 2016 .

[2]  A. Gektin Scintillators and storage phosphors based on ABX3 crystals , 2000 .

[3]  V. Cherginets,et al.  Scintillation properties of CsSrX3:Eu2+ (CsSr1−yEuyX3, X = Cl, Br; 0 ≤ y ≤ 0.05) single crystals grown by the Bridgman method , 2014 .

[4]  J. B. Birks,et al.  The Theory and Practice of Scintillation Counting , 1965 .

[5]  Hua Wei,et al.  Two new cerium-doped mixed-anion elpasolite scintillators: Cs2NaYBr3I3 and Cs2NaLaBr3I3 , 2014 .

[6]  P. Dorenbos Energy of the first 4f 7 -4f 6 5d transition of Eu 2þ in inorganic compounds , 2003 .

[7]  Hongsheng Shi,et al.  The LaBr3:Ce Crystal Growth by Self-Seeding Bridgman Technique and Its Scintillation Properties , 2010 .

[8]  K. Nelson,et al.  The Effect of Gamma-ray Detector Energy Resolution on the Ability to Identify Radioactive Sources , 2009 .

[9]  M. Zhuravleva,et al.  Potassium strontium iodide: A new high light yield scintillator with 2.4% energy resolution , 2013, 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC).

[10]  G. Rooh,et al.  Crystal Growth and Scintillation Properties of , 2010 .

[11]  M. Klintenberg,et al.  The Quest for the Ideal Inorganic Scintillator , 2002 .

[12]  H. Moser,et al.  Scintillation properties of ZnWO4 , 1985 .

[13]  P. Dorenbos Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds , 2003 .

[14]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[15]  G. E. Thomas,et al.  Measurement of the Time Dependence of Scintillation Intensity by a Delayed‐Coincidence Method , 1961 .

[16]  G. Meyer,et al.  Ternäre Bromide und Iodide zweiwertiger Lanthanide und ihre Erdalkali‐Analoga vom Typ AMX3 und AM2X5 , 1996 .

[17]  M. Zhuravleva,et al.  New single crystal scintillators: CsCaCl3:Eu and CsCaI3:Eu , 2012 .

[18]  M. Zhuravleva,et al.  Crystal growth and characterization of CsSr1–xEux I3 high light yield scintillators , 2011 .

[19]  A. Vasil’ev,et al.  Scintillation Efficiency Improvement by Mixed Crystal Use , 2014, IEEE Transactions on Nuclear Science.

[20]  M. Zhuravleva,et al.  Crystal growth and scintillation properties of Ce3+-doped KGd2Cl7 , 2011 .

[21]  G. Bizarri,et al.  Structure and scintillation properties of Ce3+-activated Cs2NaLaCl6, Cs3LaCl6, Cs2NaLaBr6, Cs3LaBr6, Cs2NaLaI6 and Cs3LaI6 , 2014 .

[22]  M. Zhuravleva,et al.  Crystal growth and scintillation properties of Cs3CeCl6 and CsCe2Cl7 , 2011 .

[23]  Rostyslav Boutchko,et al.  New scintillators discovered by high-throughput screening , 2011 .

[24]  H. Nau,et al.  A Study on AB2X5 Compounds (A: K, In, Tl; B: Sr, Sn, Pb; X: Cl, Br, I) , 1986 .

[25]  I. V. Khodyuk,et al.  Scintillation Properties of and Self Absorption in , 2010 .

[26]  M. D. Birowosuto,et al.  Scintillation and luminescence properties of Ce3+ doped ternary cesium rare‐earth halides , 2007 .

[27]  P. Dorenbos,et al.  Scintillation Properties of and Self Absorption in ${\rm SrI}_{2}\!:\!{\rm Eu}^{2+}$ , 2011, IEEE Transactions on Nuclear Science.

[28]  B. Milbrath,et al.  Contamination Studies of LaCl$_3$:Ce Scintillators , 2006, IEEE Transactions on Nuclear Science.

[29]  Hua Wei,et al.  Scintillation Properties of Cs $_{3}$ LaCl $_{6}$ :Ce $^{3+}$ and Cs $_{3}$ LaBr $_{6}$ :Ce $^{3+}$ , 2014 .

[30]  P. Dorenbos,et al.  Non-proportionality in the scintillation response and the energy resolution obtainable with scintill , 1995 .

[31]  Improvement of LaBr3:5%Ce scintillation properties by Li+, Na+, Mg2+, Ca2+, Sr2+, and Ba2+ co-doping , 2013 .

[32]  G. Bizarri,et al.  Eu2+-doped Ba2CsI5, a new high-performance scintillator , 2009 .

[33]  M. Zhuravleva,et al.  Theoretical and experimental characterization of promising new scintillators: Eu2+ doped CsCaCl3 and CsCaI3 , 2013 .

[34]  Michael Groza,et al.  Bridgman growth of large SrI2:Eu2+ single crystals: A high-performance scintillator for radiation detection applications , 2013 .

[35]  G. Meyer,et al.  Rare-earth diiodides and derivatives , 2004 .