Qudi: A modular python suite for experiment control and data processing

Abstract Qudi is a general, modular, multi-operating system suite written in Python 3 for controlling laboratory experiments. It provides a structured environment by separating functionality into hardware abstraction, experiment logic and user interface layers. The core feature set comprises a graphical user interface, live data visualization, distributed execution over networks, rapid prototyping via Jupyter notebooks, configuration management, and data recording. Currently, the included modules are focused on confocal microscopy, quantum optics and quantum information experiments, but an expansion into other fields is possible and encouraged.

[1]  Paul B. Manis,et al.  ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research , 2014, Front. Neuroinform..

[2]  Lachlan J. Rogers,et al.  Nanodiamonds carrying silicon-vacancy quantum emitters with almost lifetime-limited linewidths , 2016, 1602.03391.

[3]  C. Trautmann,et al.  Room-temperature entanglement between single defect spins in diamond , 2012, 1212.2804.

[4]  S. Hell,et al.  Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses , 2009 .

[5]  M. Plenio,et al.  Detecting and polarizing nuclear spins with double resonance on a single electron spin. , 2013, Physical review letters.

[6]  Andreas Schönle,et al.  Resolution scaling in STED microscopy. , 2008, Optics express.

[7]  Neil B. Manson,et al.  Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces , 2014, 1401.4106.

[8]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[9]  B. Masters Book Rvw: Handbook of Biological Confocal Microscopy, Second Edition. Edited by J. B. Pawley , 1996 .

[10]  Jeffrey M. Perkel,et al.  Programming: Pick up Python , 2015, Nature.

[11]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[12]  S. Ya. Kilin,et al.  Quantum registers based on single NV + n13C centers in diamond: II. Spin characteristics of registers and spectra of optically detected magnetic resonance , 2010 .

[13]  Wolfgang J Parak,et al.  A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. , 2009, Nature nanotechnology.

[14]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[15]  M. Lukin,et al.  Indistinguishable photons from separated silicon-vacancy centers in diamond. , 2014, Physical review letters.

[16]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[17]  John K. Ousterhout,et al.  Scripting: Higher-Level Programming for the 21st Century , 1998, Computer.

[18]  J. Wrachtrup,et al.  Towards T1-limited magnetic resonance imaging using Rabi beats , 2010, 1009.0770.

[19]  Christian Eggeling,et al.  Diffraction-unlimited all-optical imaging and writing with a photochromic GFP , 2011, Nature.

[20]  Alf Honigmann,et al.  Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. , 2013, Biophysical journal.

[21]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[22]  F. Jelezko,et al.  Dark states of single nitrogen-vacancy centers in diamond unraveled by single shot NMR. , 2010, Physical review letters.

[23]  Fedor Jelezko,et al.  Optical depth localization of nitrogen-vacancy centers in diamond with nanometer accuracy. , 2014, Optics express.

[24]  Fedor Jelezko,et al.  Read-out of single spins by optical spectroscopy , 2004 .

[25]  P. Grangier,et al.  Nonclassical radiation from diamond nanocrystals , 2001, OFC 2001.

[26]  Dalmeet Singh Chawla,et al.  The unsung heroes of scientific software , 2016, Nature.

[27]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.