Human cortical activity correlates with stereoscopic depth perception.

Stereoscopic depth perception is based on binocular disparities. Although neurons in primary visual cortex (V1) are selective for binocular disparity, their responses do not explicitly code perceived depth. The stereoscopic pathway must therefore include additional processing beyond V1. We used functional magnetic resonance imaging (fMRI) to examine stereo processing in V1 and other areas of visual cortex. We created stereoscopic stimuli that portrayed two planes of dots in depth, placed symmetrically about the plane of fixation, or else asymmetrically with both planes either nearer or farther than fixation. The interplane disparity was varied parametrically to determine the stereoacuity threshold (the smallest detectable disparity) and the upper depth limit (largest detectable disparity). fMRI was then used to quantify cortical activity across the entire range of detectable interplane disparities. Measured cortical activity covaried with psychophysical measures of stereoscopic depth perception. Activity increased as the interplane disparity increased above the stereoacuity threshold and dropped as interplane disparity approached the upper depth limit. From the fMRI data and an assumption that V1 encodes absolute retinal disparity, we predicted that the mean response of V1 neurons should be a bimodal function of disparity. A post hoc analysis of electrophysiological recordings of single neurons in macaques revealed that, although the average firing rate was a bimodal function of disparity (as predicted), the precise shape of the function cannot fully explain the fMRI data. Although there was widespread activity within the extrastriate cortex (consistent with electrophysiological recordings of single neurons), area V3A showed remarkable sensitivity to stereoscopic stimuli, suggesting that neurons in V3A may play a special role in the stereo pathway.

[1]  C. Wheatstone XVIII. Contributions to the physiology of vision. —Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision , 1962, Philosophical Transactions of the Royal Society of London.

[2]  K. N. Ogle Precision and validity of stereoscopic depth perception from double images. , 1953, Journal of the Optical Society of America.

[3]  Charles Wheatstone On some remarkable and hitherto unobserved phenomena of binocular vision. , 1962 .

[4]  H. Wallach,et al.  The constancy of stereoscopic depth. , 1963, The American journal of psychology.

[5]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[6]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[7]  T Shipley,et al.  Stereoscopic acuity and horizontal angular distance from fixation. , 1969, Journal of the Optical Society of America.

[8]  D. Hubel,et al.  Stereoscopic Vision in Macaque Monkey: Cells sensitive to Binocular Depth in Area 18 of the Macaque Monkey Cortex , 1970, Nature.

[9]  L. Maffei,et al.  Electrophysiological Evidence for Binocular Disparity Detectors in Human Visual System , 1970, Science.

[10]  C. Blakemore The range and scope of binocular depth discrimination in man , 1970, The Journal of physiology.

[11]  S. Zeki Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. , 1978, The Journal of physiology.

[12]  S. Zeki,et al.  Functional specialization and binocular interaction in the visual areas of rhesus monkey prestriate cortex , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  J. Sheedy Actual measurement of fixation disparity and its use in diagnosis and treatment. , 1980, Journal of the American Optometric Association.

[14]  J. Atkinson,et al.  Some recent findings on the development of human binocularity: A review , 1983, Behavioural Brain Research.

[15]  Suzanne P. McKee,et al.  The spatial requirements for fine stereoacuity , 1983, Vision Research.

[16]  John H. R. Maunsell,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. , 1983, Journal of neurophysiology.

[17]  A. Norcia,et al.  Temporal frequency limits for stereoscopic apparent motion processes , 1984, Vision Research.

[18]  Anthony M. Norcia,et al.  Electrophysiological evidence for the existence of coarse and fine disparity mechanisms in human , 1985, Vision Research.

[19]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[20]  G. Westheimer Spatial interaction in the domain of disparity signals in human stereoscopic vision. , 1986, The Journal of physiology.

[21]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  G. Poggio,et al.  Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  A. Parker,et al.  Spatial properties of disparity pooling in human stereo vision , 1989, Vision Research.

[25]  Lawrence K. Cormack,et al.  Hyperacuity, superresolution and gap resolution in human stereopsis , 1989, Vision Research.

[26]  S. Lehky,et al.  Neural model of stereoacuity and depth interpolation based on a distributed representation of stereo disparity [published erratum appears in J Neurosci 1991 Mar;11(3):following Table of Contents] , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  I. Ohzawa,et al.  On the neurophysiological organization of binocular vision , 1990, Vision Research.

[28]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[29]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  D. Glaser,et al.  Depth discrimination of a line is improved by adding other nearby lines , 1992, Vision Research.

[31]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[32]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[33]  E. Peterhans,et al.  Functional Organization of Area V2 in the Alert Macaque , 1993, The European journal of neuroscience.

[34]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[35]  Alan C. Evans,et al.  Localization and lateralization of stereoscopic processing in the human brain. , 1993, Neuroreport.

[36]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[37]  B. Gulyás,et al.  Binocular disparity discrimination in human cerebral cortex: functional anatomy by positron emission tomography. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Gian F. Poggio Mechanisms of Stereopsis in Monkey Visual Cortex , 1995 .

[39]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[40]  D. Ts'o,et al.  Visual topography in primate V2: multiple representation across functional stripes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  A E Stillman,et al.  Functional MRI of brain during breath holding at 4 T. , 1995, Magnetic resonance imaging.

[42]  J. Cohen,et al.  Spiral K‐space MR imaging of cortical activation , 1995, Journal of magnetic resonance imaging : JMRI.

[43]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  Ian P. Howard,et al.  Binocular Vision and Stereopsis , 1996 .

[45]  F. A. Miles Binocular Vision and Stereopsis by Ian P. Howard and Brian J. Rogers, Oxford University Press, 1995. £90.00 (736 pages) ISBN 0 19 508476 4. , 1996, Trends in Neurosciences.

[46]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[47]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[48]  David J. Fleet,et al.  Neural encoding of binocular disparity: Energy models, position shifts and phase shifts , 1996, Vision Research.

[49]  H. Mallot,et al.  Disparity-evoked Vergence is Driven by Interocular Correlation , 1996, Vision Research.

[50]  Guillermo Sapiro,et al.  Creating connected representations of cortical gray matter for functional MRI visualization , 1997, IEEE Transactions on Medical Imaging.

[51]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[52]  B. G. Cumming,et al.  Responses of primary visual cortical neurons to binocular disparity without depth perception , 1997, Nature.

[53]  B. Biswal,et al.  Simultaneous assessment of flow and BOLD signals in resting‐state functional connectivity maps , 1997, NMR in biomedicine.

[54]  David J. Heeger,et al.  Neural basis of stereo dkpth perceffion measured with fMRI , 1997 .

[55]  P. Mitra,et al.  The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging , 1997, Magnetic resonance in medicine.

[56]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[57]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[58]  A. Dale,et al.  From retinotopy to recognition: fMRI in human visual cortex , 1998, Trends in Cognitive Sciences.

[59]  G. Glover,et al.  Self‐navigated spiral fMRI: Interleaved versus single‐shot , 1998, Magnetic resonance in medicine.

[60]  M. D’Esposito,et al.  The variability of human BOLD hemodynamic responses , 1998, NeuroImage.

[61]  R Perez,et al.  Neural mechanisms underlying stereoscopic vision , 1998, Progress in Neurobiology.

[62]  S. Miyauchi,et al.  Attention-regulated activity in human primary visual cortex. , 1998, Journal of neurophysiology.

[63]  E. Vogel,et al.  Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[64]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[65]  D. Heeger,et al.  Functional Magnetic Resonance Imaging of Early Visual Pathways in Dyslexia , 1998, The Journal of Neuroscience.

[66]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[67]  Ravi S. Menon,et al.  Effect of luminance contrast on BOLD fMRI response in human primary visual areas. , 1998, Journal of neurophysiology.

[68]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[69]  J. Duyn,et al.  Investigation of Low Frequency Drift in fMRI Signal , 1999, NeuroImage.

[70]  A. Parker,et al.  Binocular Neurons in V1 of Awake Monkeys Are Selective for Absolute, Not Relative, Disparity , 1999, The Journal of Neuroscience.

[71]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[72]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[73]  A. Dale,et al.  The Representation of Illusory and Real Contours in Human Cortical Visual Areas Revealed by Functional Magnetic Resonance Imaging , 1999, The Journal of Neuroscience.

[74]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[75]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[76]  E. Seidemann,et al.  Color Signals in Area MT of the Macaque Monkey , 1999, Neuron.

[77]  D. Heeger,et al.  Motion Opponency in Visual Cortex , 1999, The Journal of Neuroscience.

[78]  D. Heeger,et al.  Neuronal basis of contrast discrimination , 1999, Vision Research.

[79]  Brian A Wandell,et al.  Color Signals in Human Motion-Selective Cortex , 1999, Neuron.

[80]  I. Ohzawa,et al.  Neural mechanisms for processing binocular information II. Complex cells. , 1999, Journal of neurophysiology.

[81]  D. Somers,et al.  Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[82]  B. Biswal,et al.  Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. , 1999, Journal of computer assisted tomography.

[83]  I. Ohzawa,et al.  Neural mechanisms for processing binocular information I. Simple cells. , 1999, Journal of neurophysiology.

[84]  G H Glover,et al.  Simple analytic spiral K‐space algorithm , 1999, Magnetic resonance in medicine.

[85]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[86]  G. DeAngelis,et al.  Organization of Disparity-Selective Neurons in Macaque Area MT , 1999, The Journal of Neuroscience.

[87]  Karl J. Friston,et al.  A direct quantitative relationship between the functional properties of human and macaque V5 , 2000, Nature Neuroscience.

[88]  Andrew J. Parker,et al.  Local Disparity Not Perceived Depth Is Signaled by Binocular Neurons in Cortical Area V1 of the Macaque , 2000, The Journal of Neuroscience.

[89]  D. Heeger,et al.  Task-related modulation of visual cortex. , 2000, Journal of neurophysiology.

[90]  Bruce G. Cumming,et al.  Binocular Neurons and the Perception of Depth , 2000 .

[91]  D. G. Albrecht,et al.  Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? , 2000, Nature Neuroscience.

[92]  D. Heeger,et al.  Activity in primary visual cortex predicts performance in a visual detection task , 2000, Nature Neuroscience.

[93]  A. Parker,et al.  The Precision of Single Neuron Responses in Cortical Area V1 during Stereoscopic Depth Judgments , 2000, The Journal of Neuroscience.

[94]  B. Wandell,et al.  Visualization and Measurement of the Cortical Surface , 2000, Journal of Cognitive Neuroscience.

[95]  D J Heeger,et al.  Robust multiresolution alignment of MRI brain volumes , 2000, Magnetic resonance in medicine.

[96]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[97]  C E Connor,et al.  Disparity tuning in macaque area V4 , 2001, Neuroreport.

[98]  A. Parker,et al.  Quantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms. , 2002, Journal of neurophysiology.

[99]  A. Parker,et al.  Range and mechanism of encoding of horizontal disparity in macaque V1. , 2002, Journal of neurophysiology.