High-throughput study of the structural stability and thermoelectric properties of transition metal silicides

The phase stability, electronic structure and transport properties of binary 3d, 4d and 5d transition metal silicides are investigated using high-throughput density functional calculations. An overall good agreement is found between the calculated 0 K phase diagrams and experiment. We introduce descriptors for the phase-stability and thermoelectric properties and hereby identify several candidates with potential for thermoelectric applications. This includes known thermoelectrics like Mn4Si7, β-FeSi2, Ru2Si3 and CrSi2 as well as new potentially meta-stable materials like Rh3Si5, Fe2Si3 and an orthorhombic CrSi2 phase. Analysis of the electronic structure shows that the gap formation in most of the semiconducting transition metal silicides can be understood with simple hybridization models. The transport properties of the Mn4Si7, Ru2Ge3 and Ir3Si5 structure types and the orthorhombic CrSi2 phase are discussed. The calculated transport properties are in good agreement with available experimental data. It is shown that a better thermoelectric performance may be achieved upon optimal doping. Finally, the high-throughput data are analysed and rationalized using a simple tight-binding model.

[1]  R. Drautz,et al.  Environmental tight-binding modeling of nickel and cobalt clusters , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  R. Drautz,et al.  High throughput density functional investigations of the stability, electronic structure and thermoelectric properties of binary silicides. , 2012, Physical chemistry chemical physics : PCCP.

[3]  Jia Li,et al.  The electronic structure and optical properties of XSi(X = Fe,Ru,Os): A first principles investigation within the modified Becke–Johnson exchange potential plus LDA , 2012 .

[4]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[5]  G. Madsen,et al.  Ab initio Calculations of Intrinsic Point Defects in ZnSb , 2012 .

[6]  David J. Singh,et al.  Very heavily electron-doped CrSi2 as a high-performance high-temperature thermoelectric material , 2012 .

[7]  Y. Gelbstein,et al.  Silicon-Rich Higher Manganese Silicides for Thermoelectric Applications , 2012, Journal of Electronic Materials.

[8]  Thomas Olsen,et al.  Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .

[9]  G. Kotliar,et al.  Signatures of electronic correlations in iron silicide , 2011, Proceedings of the National Academy of Sciences.

[10]  G. Madsen,et al.  Enhanced Thermoelectric Properties in Zinc Antimonides , 2011 .

[11]  H. Yamane,et al.  Crystal structure and thermoelectric properties of β-MoSi2 , 2011 .

[12]  Georg K. H. Madsen,et al.  Optimized orthogonal tight-binding basis: Application to iron , 2011 .

[13]  O. Delaire,et al.  Thermoelectric properties of Co-, Ir-, and Os-doped FeSi alloys: Evidence for strong electron-phonon coupling , 2011, 1105.2006.

[14]  C. Uher,et al.  Rapid synthesis of high thermoelectric performance higher manganese silicide with in-situ formed nano-phase of MnSi , 2011 .

[15]  A. Burkov,et al.  Influence of heat treatment on the structure and thermoelectric properties of CrSi2 , 2011 .

[16]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[17]  Stefano Curtarolo,et al.  Structure maps for hcp metals from first-principles calculations , 2010, 1002.2822.

[18]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[19]  K. Kishida,et al.  Crystal structure and thermoelectric properties of chimney-ladder compounds in the Ru2Si3-Mn4Si7 pseudobinary system , 2009 .

[20]  Eric S. Toberer,et al.  Thermoelectric properties of p-type LiZnSb : Assessment of ab initio calculations , 2009 .

[21]  N. N. Dorozhkin,et al.  Features of the band structure for semiconducting iron, ruthenium, and osmium monosilicides , 2009 .

[22]  Andrew L. Schmitt,et al.  Higher manganese silicide nanowires of Nowotny chimney ladder phase. , 2008, Journal of the American Chemical Society.

[23]  A. Umarji,et al.  Role of milling parameters and impurity on the thermoelectric properties of mechanically alloyed chromium silicide , 2008 .

[24]  N. N. Dorozhkin,et al.  Electronic and optical properties of Ir3Si5 , 2007 .

[25]  G. Madsen,et al.  Automated search for new thermoelectric materials: the case of LiZnSb. , 2006, Journal of the American Chemical Society.

[26]  M. Armbrüster,et al.  CuAl2 revisited: Composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy , 2006 .

[27]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[28]  V. Zaitsev,et al.  Thermoelectrics of Transition Metal Silicides , 2005 .

[29]  V. Borisenko,et al.  Structural, electronic and optical properties of a new binary phase – ruthenium disilicide , 2005 .

[30]  H. Inui,et al.  Directional thermoelectric properties of Ru2Si3 , 2005 .

[31]  H. Kaibe,et al.  Doping Effects on Thermoelectric Properties of Higher Manganese Silicides (HMSs, MnSi1.74) and Characterization of Thermoelectric Generating Module using p-Type (Al, Ge and Mo)-doped HMSs and n-Type Mg2Si0.4Sn0.6 Legs , 2005 .

[32]  K. Koepernik,et al.  Calculated magnetocrystalline anisotropy of existing and hypothetical MCo5 compounds , 2005 .

[33]  L. Miglio,et al.  Electronic properties of semiconducting silicides: fundamentals and recent predictions , 2004 .

[34]  R. Hoffmann,et al.  The Nowotny chimney ladder phases: whence the 14 electron rule? , 2004, Inorganic chemistry.

[35]  D. Pettifor,et al.  Electronic origin of structural trends across early transition-metal disilicides: Anomalous behavior of CrSi 2 , 2004 .

[36]  K. Kuwabara,et al.  Crystal Structure and Thermoelectric Properties of ReSi1.75 Based Silicides , 2003 .

[37]  B. Cook,et al.  Electronic and optical properties of isostructural β − FeSi 2 and OsSi 2 , 2001 .

[38]  Y. Ohta,et al.  Thermoelectric semiconductor iron disilicides produced by sintering elemental powders , 1999 .

[39]  W. Pitschke,et al.  High temperature thermoelectric properties of doped iridium silicide thin films , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[40]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[41]  R. Hoffmann,et al.  The TiNiSi Family of Compounds: Structure and Bonding , 1998 .

[42]  C. Goldmann,et al.  Transport properties of RuSi, RuGe, OsSi, and quasi-binary alloys of these compounds , 1998 .

[43]  V. Vescoli,et al.  The optical properties of RuSi: Kondo insulator or conventional semiconductor? , 1998 .

[44]  John L. Sarrao,et al.  Low-temperature transport, thermodynamic, and optical properties of FeSi , 1997 .

[45]  H. Lange Electronic Properties of Semiconducting Silicides , 1997 .

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[48]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[49]  C. B. Vining Thermoelectric Properties of Silicides , 1995 .

[50]  Jones,et al.  Magnetic, transport, and structural properties of Fe1-xIrxSi. , 1994, Physical review. B, Condensed matter.

[51]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[52]  Hamann,et al.  Band structure and semiconducting properties of FeSi. , 1993, Physical review. B, Condensed matter.

[53]  J. Greedan,et al.  Crystal structure and superconductivity in Re2Si , 1991 .

[54]  J. V. Spiegel,et al.  Structural and electrical properties of ZrSi2 and Zr2CuSi4 formed by rapid thermal processing , 1991 .

[55]  Christensen Electronic structure of beta -FeSi2. , 1990, Physical review. B, Condensed matter.

[56]  C. Jia,et al.  High-resolution electron microscopy studies of the microstructure in C49-TiSi2 crystals , 1989 .

[57]  W. Tremel,et al.  Transitions between NiAs and MnP type phases: an electronically driven distortion of triangular (36) nets , 1986 .

[58]  D. Pettifor,et al.  The structures of binary compounds. II. Theory of the pd-bonded AB compounds , 1986 .

[59]  C. Suryanarayana A new metastable phase in the silver-silicon system , 1974 .

[60]  E. Hockings,et al.  Crystal structure of iridium trisilicide, IrSi3 , 1971 .

[61]  L. Walker,et al.  Paramagnetic Excited State of FeSi , 1967 .

[62]  E. Parthé,et al.  AB compounds with ScY and rare earth metals. II. FeB and CrB structures of monosilicides and germanides , 1966 .

[63]  H. Nowotny,et al.  THE CRYSTAL STRUCTURE OF THE SO-CALLED TECHNETIUM DISILICIDE , 1965 .

[64]  A. Searcy,et al.  A new crystallographic modification of rhodium monosilicide , 1959 .

[65]  Y. Hayakawa,et al.  Thermoelectric properties of group VI metal silicide semiconductors , 2011 .

[66]  W. B. Pearson,et al.  Pearson's crystal data : crystal structure database for inorganic compounds , 2007 .

[67]  V. Borisenko,et al.  Thermoelectric efficiency of single crystal semiconducting ruthenium silicide , 2006 .

[68]  Aoyama Ikuto,et al.  高けい化マンガン(HMSs,MnSi1.74)の熱電におよぼすドーピング効果とp型(Al,GeおよびMo)ドープのHMSsとn型Mg2Si0.4Sn0.6脚を用いる熱電気発生モジュールの特性評価 , 2005 .

[69]  M. Richter,et al.  Relativistic Solid State Calculations , 2004 .

[70]  E. Hoyer,et al.  Polymorphism in IrSi3. , 1982 .