Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents

uniaxial stress–strain response. Local final-failure criteria are also proposed based on mode-specific strain energy release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate thecapabilityofthecoupledmodeltocapturethevastlydifferentcharacterofthemonolithic(neat)resinmatrixand the composite in response to far-field tension, compression, and shear loading.

[1]  B. Bednarcyk,et al.  Local field effects in titanium matrix composites subject to fiber-matrix debonding , 2004 .

[2]  Robert L. Taylor,et al.  A constitutive model for anisotropic damage in fiber-composites , 1995 .

[3]  Marek-Jerzy Pindera,et al.  An efficient implementation of the generalized method of cells for unidirectional, multi-phased composites with complex microstructures , 1999 .

[4]  Ramesh Talreja,et al.  A continuum mechanics characterization of damage in composite materials , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  Zdeněk P. Bažant,et al.  Mechanics of solid materials , 1992 .

[6]  J. Aboudi The effect of anisotropic damage evolution on the behavior of ductile and brittle matrix composites , 2011 .

[7]  Jacob Aboudi,et al.  Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites , 2001 .

[8]  Ramesh Talreja,et al.  Transverse Cracking and Stiffness Reduction in Composite Laminates , 1985 .

[9]  J. Aboudi The Generalized Method of Cells and High-Fidelity Generalized Method of Cells Micromechanical Models—A Review , 2004 .

[10]  B. Bednarcyk,et al.  Micromechanics-based progressive failure analysis of composite laminates using different constituent failure theories , 2008 .

[11]  J. Aboudi,et al.  Higher-order theory for periodic multiphase materials with inelastic phases , 2003 .

[12]  A. Hansen,et al.  Recent Advances in Failure Predictions of Composite Laminates Utilizing Multicontinuum Technology , 2008 .

[13]  J. Aboudi,et al.  High-Fidelity Generalization Method of Cells for Inelastic Periodic Multiphase Materials , 2002 .

[14]  Jean-Louis Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[15]  Z. Hashin Failure Criteria for Unidirectional Fiber Composites , 1980 .

[16]  James F. Newill,et al.  Predicting the Nonlinear Response and Failure of Composite Laminates: Correlation With Experimental Results , 2004 .

[17]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[18]  J. Aboudi,et al.  Nonlinear micromechanical formulation of the high fidelity generalized method of cells , 2009 .

[19]  Anthony M. Waas,et al.  Characterization of the in-situ non-linear shear response of laminated fiber-reinforced composites , 2010 .

[20]  M. Hinton Failure Criteria in Fibre-Reinforced-Polymer Composites: The World-Wide Failure Exercise , 2004 .

[21]  Jacob Aboudi,et al.  Formulation of the high-fidelity generalized method of cells with arbitrary cell geometry for refined micromechanics and damage in composites , 2010 .