The variational principles of classical type for non-coupled non-stationary irreversible transport processes with convective motion and relaxation

Abstract A unified method is presented that leads to the new functionals of classical type for which the necessary stationarity conditions are linear hyperbolic differential equations of change describing uncoupled heat, mass and momentum transport in incompressible media. Attention is directed toward the significance of functionals found for a variational description of irreversible transport processes, especially those involving relaxation effects. The applicability of direct variational methods for finding nonstationary fields of temperature, concentration, pressure and velocities is emphasized.

[1]  A. V. Luikov,et al.  Analytical Heat Diffusion Theory , 1969 .

[2]  R. W. Bain,et al.  Convective mass transfer , 1963 .

[3]  A. Cemal Eringen,et al.  Mechanics of continua , 1967 .

[4]  S. Tomotika,et al.  THE STEADY FLOW OF A VISCOUS FLUID PAST AN ELLIPTIC CYLINDER AND A FLAT PLATE AT SMALL REYNOLDS NUMBERS , 1953 .

[5]  P. Glansdorff,et al.  Thermodynamic theory of structure, stability and fluctuations , 1971 .

[6]  S. Goldstein ON DIFFUSION BY DISCONTINUOUS MOVEMENTS, AND ON THE TELEGRAPH EQUATION , 1951 .

[7]  D. Djukic,et al.  On one variational principle of Hamilton's type for nonlinear heat transfer problem , 1972 .

[8]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[9]  James Clerk Maxwell,et al.  IV. On the dynamical theory of gases , 1868, Philosophical Transactions of the Royal Society of London.

[10]  M. Chester Second Sound in Solids , 1963 .

[11]  J. Ferry Viscoelastic properties of polymers , 1961 .

[12]  R. L. Seliger,et al.  Variational principles in continuum mechanics , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  B. Vujanović An approach to linear and nonlinear heat transfer problem using a Lagrangian , 1971 .

[14]  R. E. Nettleton Relaxation Theory of Thermal Conduction in Liquids , 1960 .

[15]  G. F. Newell,et al.  The variational method in engineering , 1968 .

[16]  Helmut D. Weymann,et al.  Finite Speed of Propagation in Heat Conduction, Diffusion, and Viscous Shear Motion , 1967 .

[17]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[18]  Morton E. Gurtin,et al.  Variational principles for linear elastodynamics , 1964 .

[19]  Ladislaus Natanson Ueber die Gesetze nicht umkehrbarer Vorgänge , 1896 .

[20]  D. Sandiford,et al.  ``Second Sound'' in Solid Helium , 1970 .

[21]  L. E. Scriven,et al.  On the search for variational principles , 1967 .

[22]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .