暂无分享,去创建一个
[1] Marie-Françoise Roy,et al. Real algebraic geometry , 1992 .
[2] József Solymosi,et al. Incidence Theorems for Pseudoflats , 2007, Discret. Comput. Geom..
[3] R. Thom. Sur L'Homologie des Varietes Algebriques Réelles , 1965 .
[4] H. Whitney. Elementary Structure of Real Algebraic Varieties , 1957 .
[5] Csaba D. Tóth,et al. Incidences of not-too-degenerate hyperplanes , 2005, Symposium on Computational Geometry.
[6] Haim Kaplan,et al. Simple Proofs of Classical Theorems in Discrete Geometry via the Guth–Katz Polynomial Partitioning Technique , 2011, Discret. Comput. Geom..
[7] P Erd,et al. On Sets of Distances of N Points in Euclidean Space , 2022 .
[8] Fan Chung Graham. Sphere-and-Point Incidence Relations in High Dimensions with Applications to Unit Distances and Furthest-Neighbor Pairs , 1989, Discret. Comput. Geom..
[9] S. L. Kleiman. INTERSECTION THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. Band 2) , 1985 .
[10] J. Milnor. On the Betti numbers of real varieties , 1964 .
[11] Saugata Basu,et al. Refined Bounds on the Number of Connected Components of Sign Conditions on a Variety , 2011, Discret. Comput. Geom..
[12] D. S. Arnon,et al. Algorithms in real algebraic geometry , 1988 .
[13] József Solymosi,et al. An Incidence Theorem in Higher Dimensions , 2012, Discret. Comput. Geom..
[14] V. Sós,et al. On a problem of K. Zarankiewicz , 1954 .
[15] A. Iosevich,et al. Geometric incidence theorems via Fourier analysis , 2007, 0709.3786.
[16] Kenneth L. Clarkson,et al. Combinatorial complexity bounds for arrangements of curves and surfaces , 2015, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[17] Micha Sharir,et al. On the Number of Incidences Between Points and Curves , 1998, Combinatorics, Probability and Computing.
[18] Leonidas J. Guibas,et al. Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..
[19] Haim Kaplan,et al. Unit Distances in Three Dimensions , 2012, Comb. Probab. Comput..
[20] Larry Guth,et al. On the Erdos distinct distance problem in the plane , 2010, 1011.4105.
[21] Johan P. Hansen,et al. INTERSECTION THEORY , 2011 .
[22] P. Erdös. On Sets of Distances of n Points , 1946 .
[23] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.