Berry curvature dipole in Weyl semimetal materials: An ab initio study

Noncentrosymmetric metals are anticipated to exhibit a $dc$ photocurrent in the nonlinear optical response caused by the Berry curvature dipole in momentum space. Weyl semimetals (WSMs) are expected to be excellent candidates for observing these nonlinear effects because they carry a large Berry curvature concentrated in small regions, i.e., near the Weyl points. We have implemented the semiclassical Berry curvature dipole formalism into an $ab~initio$ scheme and investigated the second-order nonlinear response for two representative groups of materials: the TaAs-family type-I WSMs and MoTe$_2$-family type-II WSMs. Both types of WSMs exhibited a Berry curvature dipole, in which type-II Weyl points are usually superior to the type-I because of the strong tilt. Corresponding nonlinear susceptibilities in several materials promise a nonlinear Hall effect in the $dc$ field limit, which is within the experimentally detectable range.

[1]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[2]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[3]  J. Sipe,et al.  Second-order optical response in semiconductors , 2000 .

[4]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[5]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[6]  Anomalous hall effect , 2009, 0904.4154.

[7]  J. E. Moore,et al.  Confinement-induced berry phase and helicity-dependent photocurrents. , 2009, Physical review letters.

[8]  James S. Langer,et al.  Annual review of condensed matter physics , 2010 .

[9]  Kai-Yu Yang,et al.  Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates , 2011, 1105.2353.

[10]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[11]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[12]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[13]  W. Marsden I and J , 2012 .

[14]  S. Young,et al.  First principles calculation of the shift current photovoltaic effect in ferroelectrics. , 2012, Physical review letters.

[15]  Xiaoliang Qi,et al.  Recent developments in transport phenomena in Weyl semimetals , 2013, 1309.4464.

[16]  A. Burkov,et al.  Anomalous Hall effect in Weyl metals. , 2014, Physical review letters.

[17]  X. Qi,et al.  Tunable circular dichroism due to the chiral anomaly in Weyl semimetals , 2014, 1401.2762.

[18]  C. Felser,et al.  Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP , 2015, Nature Physics.

[19]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[20]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[21]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[22]  L. Fu,et al.  Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials. , 2015, Physical review letters.

[23]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[24]  G. F. Chen,et al.  Experimental discovery of Weyl semimetal TaAs , 2015 .

[25]  S. Arnold,et al.  Ablation of hippocampal neurogenesis in mice impairs the response to stress during the dark cycle , 2015, Nature Communications.

[26]  C. Felser,et al.  Prediction of Weyl semimetal in orthorhombicMoTe2 , 2015, Physical Review B.

[27]  Zhongkai Liu,et al.  Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.

[28]  S. M. Walker,et al.  Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WT e 2 , 2016, 1604.02411.

[29]  J. Orenstein,et al.  Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals , 2016, 1609.05932.

[30]  Su-Yang Xu,et al.  Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal , 2016, Nature Communications.

[31]  Claudia Felser,et al.  Topological Materials: Weyl Semimetals , 2016, 1611.04182.

[32]  C. Felser,et al.  Quantum oscillations and the Fermi surface topology of the Weyl semimetal NbP , 2015, 1512.04229.

[33]  Timothy M. McCormick,et al.  Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.

[34]  W. Duan,et al.  Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.

[35]  C. Felser,et al.  Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs. , 2016, Physical review letters.

[36]  C. Felser,et al.  Pressure tuning the Fermi surface topology of the Weyl semimetal NbP , 2016, 1604.05502.

[37]  Guanghou Wang,et al.  Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2 , 2016, Nature Communications.

[38]  L. Tan,et al.  Enhancement of the Bulk Photovoltaic Effect in Topological Insulators. , 2015, Physical review letters.

[39]  C. Felser,et al.  Superconductivity in Weyl semimetal candidate MoTe2 , 2015, Nature Communications.

[40]  Ying Ran,et al.  When Chiral Photons Meet Chiral Fermions: Photoinduced Anomalous Hall Effects in Weyl Semimetals. , 2015, Physical review letters.

[41]  M. Troyer,et al.  MoTe_{2}: A Type-II Weyl Topological Metal. , 2015, Physical review letters.

[42]  Masahito Ueda,et al.  Emergent Electromagnetic Induction and Adiabatic Charge Pumping in Noncentrosymmetric Weyl Semimetals. , 2016, Physical review letters.

[43]  Yukio Tanaka,et al.  Photovoltaic chiral magnetic effect in Weyl semimetals , 2016, 1601.00379.

[44]  T. Morimoto,et al.  Topological nature of nonlinear optical effects in solids , 2015, Science Advances.

[45]  Yang Zhang,et al.  Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals. , 2016, Physical review letters.

[46]  C. Felser,et al.  Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP , 2015, Nature Communications.

[47]  C. Chen,et al.  Signature of type-II Weyl semimetal phase in MoTe2 , 2017, Nature communications.

[48]  D. Pesin,et al.  Photogalvanic effect in Weyl semimetals , 2017, 1705.03903.

[49]  P. Jarillo-Herrero,et al.  Direct optical detection of Weyl fermion chirality in a topological semimetal , 2017, Nature Physics.

[50]  T. Morimoto,et al.  Quantized circular photogalvanic effect in Weyl semimetals , 2016, Nature Communications.

[51]  G. Refael,et al.  Photocurrents in Weyl semimetals , 2016, 1607.07839.

[52]  J. E. Moore,et al.  Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals , 2016, Nature Physics.

[53]  M. Einaga,et al.  Resistivity of Weyl semimetals NbP and TaP under pressure , 2017 .

[54]  H. Tian,et al.  Circular Photogalvanic Effect in the Weyl Semimetal TaAs , 2016, 1612.07005.

[55]  C. Felser,et al.  Hidden type-II Weyl points in the Weyl semimetal NbP , 2017, 1708.07002.

[56]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.