On Tikhonov's method and optimal error bound for inverse source problem for a time-fractional diffusion equation

Abstract We investigate the linear but ill-posed inverse problem of determining a multi-dimensional space-dependent heat source in a time-fractional diffusion equation. We show that the problem is ill-posed in the Hilbert scale H r ( R n ) and establish global order optimal lower bound for the worst case error. Next, we use the Tikhonov regularization method to deal with this problem in the Hilbert scale H r ( R n ) . Locally optimal choices of parameters for the family of regularization operator in the Hilbert scales H r ( R n ) are analyzed by a-priori and a-posteriori methods. Numerical implementations are presented to illustrate our theoretical findings.

[1]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[2]  Robert Piessens,et al.  Quadpack: A Subroutine Package for Automatic Integration , 2011 .

[3]  Xiang Xu,et al.  Carleman estimate for a fractional diffusion equation with half order and application , 2011 .

[4]  Fan Yang,et al.  A mollification regularization method for the inverse spatial-dependent heat source problem , 2014, J. Comput. Appl. Math..

[5]  Yu-Bin Zhou,et al.  Optimal error bound and simplified Tikhonov regularization method for a backward problem for the time-fractional diffusion equation , 2015, J. Comput. Appl. Math..

[6]  Ralf Metzler,et al.  Boundary value problems for fractional diffusion equations , 2000 .

[7]  David H. Bailey,et al.  A Fast Method for the Numerical Evaluation of Continuous Fourier and Laplace Transforms , 1994, SIAM J. Sci. Comput..

[8]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[9]  Dang Duc Trong,et al.  Nonhomogeneous heat equation: Identification and regularization for the inhomogeneous term , 2005 .

[10]  Jing-jun Zhao,et al.  An inverse problem for space‐fractional backward diffusion problem , 2014 .

[11]  S B Yuste,et al.  Subdiffusion-limited A+A reactions. , 2001, Physical review letters.

[12]  T. Wei,et al.  An inverse time-dependent source problem for a time-fractional diffusion equation , 2016 .

[13]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[14]  William Rundell,et al.  The determination of an unknown boundary condition in a fractional diffusion equation , 2013 .

[15]  Chu-Li Fu,et al.  Identifying an unknown source term in a heat equation , 2009 .

[16]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[17]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[18]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[19]  Xiangtuan Xiong,et al.  A Tikhonov-type method for solving a multidimensional inverse heat source problem in an unbounded domain , 2012, J. Comput. Appl. Math..

[20]  HIROSHI AKIMA,et al.  Algorithm 760: Rectangular-grid-data surface fitting that has the accuracy of a bicubic polynomial , 1996, TOMS.

[21]  Jungang Wang,et al.  A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation , 2014 .

[22]  Huy Tuan Nguyen,et al.  Regularized solution of an inverse source problem for a time fractional diffusion equation , 2016 .

[23]  Enrico Scalas,et al.  Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .

[24]  Zhiyuan Li,et al.  Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients , 2013, Appl. Math. Comput..

[25]  H. L. Stone ITERATIVE SOLUTION OF IMPLICIT APPROXIMATIONS OF MULTIDIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS , 1968 .

[26]  Xiang-Tuan Xiong,et al.  An optimal method for fractional heat conduction problem backward in time , 2012 .

[27]  Ulrich Tautenhahn,et al.  Optimality for ill-posed problems under general source conditions , 1998 .

[28]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[29]  Masahiro Yamamoto,et al.  Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation , 2009 .

[30]  Ting Wei,et al.  Quasi-reversibility method to identify a space-dependent source for the time-fractional diffusion equation , 2015 .

[31]  Roberto Garrappa,et al.  Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions , 2015, SIAM J. Numer. Anal..

[32]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[33]  Katja Lindenberg,et al.  Reaction front in an A+B-->C reaction-subdiffusion process. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Dang Duc Trong,et al.  Optimal regularization for an unknown source of space-fractional diffusion equation , 2019, Appl. Math. Comput..

[35]  Fawang Liu,et al.  Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain , 2012, Comput. Math. Appl..

[36]  Thomas I. Seidman,et al.  Optimal filtering for the backward heat equation , 1996 .

[37]  Masahiro Yamamoto,et al.  Approximate controllability for fractional diffusion equations by interior control , 2014 .

[38]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[39]  T. Reginska Two-parameter discrepancy principle for combined projection and Tikhonov regularization of ill-posed problems , 2013 .

[40]  Yury Luchko,et al.  Maximum principle for the generalized time-fractional diffusion equation , 2009 .

[41]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[42]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .