Uncertainties in modeling hazardous gas releases for emergency response

In case of an accidental release of toxic gases the emergency responders need fast information about the affected area and the maximum impact. Hazard distances calculated with the models MET, ALOHA, BREEZE, TRACE and SAMS for scenarios with chlorine, ammoniac and butane releases are compared in this study. The variations of the model results are measures for uncertainties in source estimation and dispersion calculation. Model runs for different wind speeds, atmospheric stability and roughness lengths indicate the model sensitivity to these input parameters. In-situ measurements at two urban near-traffic sites are compared to results of the Integrated Nowcasting through Comprehensive Analysis (INCA) in order to quantify uncertainties in the meteorological input. The hazard zone estimates from the models vary up to a factor of 4 due to different input requirements as well as due to different internal model assumptions. None of the models is found to be 'more conservative' than the others in all scenarios. INCA wind-speeds are correlated to in-situ observations at two urban sites in Vienna with a factor of 0.89. The standard deviations of the normal error distribution are 0.8 ms ―1 in wind speed, on the scale of 50 degrees in wind direction, up to 4°C in air temperature and up to 10 % in relative humidity. The observed air temperature and humidity are well reproduced by INCA with correlation coefficients of 0.96 to 0.99. INCA is therefore found to give a good representation of the local meteorological conditions. Besides of real-time data, the INCA-short range forecast for the following hours may support the action planning of the first responders.