Multivariate normalized Powell-Sabin B-splines and quasi-interpolants
暂无分享,去创建一个
[1] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[2] Tatyana Sorokina,et al. A multivariate Powell–Sabin interpolant , 2008, Adv. Comput. Math..
[3] Catterina Dagnino,et al. On the construction of local quadratic spline quasi-interpolants on bounded rectangular domains , 2008 .
[4] C. D. Boor,et al. B-Form Basics. , 1986 .
[5] Carla Manni,et al. Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..
[6] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[7] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[8] A. Serghini,et al. Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .
[9] A. Serghini,et al. Normalized trivariate B-splines on Worsey-Piper split and quasi-interpolants , 2012 .
[10] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[11] Hartmut Prautzsch,et al. A geometric criterion for the convexity of Powell-Sabin interpolants and its multivariate generalization , 1999, Comput. Aided Geom. Des..
[12] Sara Remogna,et al. Constructing Good Coefficient Functionals for Bivariate C1 Quadratic Spline Quasi-Interpolants , 2008, MMCS.
[13] Hendrik Speleers,et al. A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..
[14] Bruce R. Piper,et al. A trivariate Powell-Sabin interpolant , 1988, Comput. Aided Geom. Des..
[15] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[16] Paul Sablonnière,et al. Error Bounds for Hermite Interpolation by Quadratic Splines on an α-Triangulation , 1987 .
[17] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[18] Thomas Kalbe,et al. Quasi-interpolation by quadratic C1-splines on truncated octahedral partitions , 2009, Comput. Aided Geom. Des..
[19] Sara Remogna,et al. On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains , 2011, Comput. Aided Geom. Des..
[20] T. Dupont,et al. Polynomial approximation of functions in Sobolev spaces , 1980 .
[21] Gerald Farin,et al. Geometric modeling : algorithms and new trends , 1987 .
[22] R. Franke. Scattered data interpolation: tests of some methods , 1982 .
[23] Andrew J. Hanson,et al. Geometry for N-Dimensional Graphics , 1994, Graphics Gems.
[24] Christian Rössl,et al. Quasi-interpolation by quadratic piecewise polynomials in three variables , 2005, Comput. Aided Geom. Des..
[25] Paul Sablonnière,et al. Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .