Multivariate normalized Powell-Sabin B-splines and quasi-interpolants

We present the construction of a multivariate normalized B-spline basis for the quadratic C^1-continuous spline space defined over a triangulation in R^s (s>=1) with a generalized Powell-Sabin refinement. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The construction can be interpreted geometrically as the determination of a set of s-simplices that must contain a specific set of points. We also propose a family of quasi-interpolants based on this multivariate Powell-Sabin B-spline representation. Their spline coefficients only depend on a set of local function values. The multivariate quasi-interpolants reproduce quadratic polynomials and have an optimal approximation order.

[1]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[2]  Tatyana Sorokina,et al.  A multivariate Powell–Sabin interpolant , 2008, Adv. Comput. Math..

[3]  Catterina Dagnino,et al.  On the construction of local quadratic spline quasi-interpolants on bounded rectangular domains , 2008 .

[4]  C. D. Boor,et al.  B-Form Basics. , 1986 .

[5]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[6]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[7]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[8]  A. Serghini,et al.  Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .

[9]  A. Serghini,et al.  Normalized trivariate B-splines on Worsey-Piper split and quasi-interpolants , 2012 .

[10]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[11]  Hartmut Prautzsch,et al.  A geometric criterion for the convexity of Powell-Sabin interpolants and its multivariate generalization , 1999, Comput. Aided Geom. Des..

[12]  Sara Remogna,et al.  Constructing Good Coefficient Functionals for Bivariate C1 Quadratic Spline Quasi-Interpolants , 2008, MMCS.

[13]  Hendrik Speleers,et al.  A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..

[14]  Bruce R. Piper,et al.  A trivariate Powell-Sabin interpolant , 1988, Comput. Aided Geom. Des..

[15]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[16]  Paul Sablonnière,et al.  Error Bounds for Hermite Interpolation by Quadratic Splines on an α-Triangulation , 1987 .

[17]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[18]  Thomas Kalbe,et al.  Quasi-interpolation by quadratic C1-splines on truncated octahedral partitions , 2009, Comput. Aided Geom. Des..

[19]  Sara Remogna,et al.  On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains , 2011, Comput. Aided Geom. Des..

[20]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[21]  Gerald Farin,et al.  Geometric modeling : algorithms and new trends , 1987 .

[22]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[23]  Andrew J. Hanson,et al.  Geometry for N-Dimensional Graphics , 1994, Graphics Gems.

[24]  Christian Rössl,et al.  Quasi-interpolation by quadratic piecewise polynomials in three variables , 2005, Comput. Aided Geom. Des..

[25]  Paul Sablonnière,et al.  Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .