Postsynaptic targets of somatostatin‐containing interneurons in the rat basolateral amygdala

The basolateral amygdala contains several subpopulations of inhibitory interneurons that can be distinguished on the basis of their content of calcium‐binding proteins or peptides. Although previous studies have shown that interneuronal subpopulations containing parvalbumin (PV) or vasoactive intestinal peptide (VIP) innervate distinct postsynaptic domains of pyramidal cells as well as other interneurons, very little is known about the synaptic outputs of the interneuronal subpopulation that expresses somatostatin (SOM). The present study utilized dual‐labeling immunocytochemical techniques at the light and electron microscopic levels to analyze the innervation of pyramidal cells, PV+ interneurons, and VIP+ interneurons in the anterior basolateral amygdalar nucleus (BLa) by SOM+ axon terminals. Pyramidal cell somata and dendrites were selectively labeled with antibodies to calcium/calmodulin‐dependent protein kinase II (CaMK); previous studies have shown that the vast majority of dendritic spines, whether CAMK+ or not, arise from pyramidal cells. Almost all SOM+ axon terminals formed symmetrical synapses. The main postsynaptic targets of SOM+ terminals were small‐caliber CaMK+ dendrites and dendritic spines, some of which were CaMK+. These SOM+ synapses with dendrites were often in close proximity to asymmetrical (excitatory) synapses to these same structures formed by unlabeled terminals. Few SOM+ terminals formed synapses with CaMK+ pyramidal cell somata or large‐caliber (proximal) dendrites. Likewise, only 15% of SOM+ terminals formed synapses with PV+, VIP+, or SOM+ interneurons. These findings suggest that inhibitory inputs from SOM+ interneurons may interact with excitatory inputs to pyramidal cell distal dendrites in the BLa. These interactions might affect synaptic plasticity related to emotional learning. J. Comp. Neurol. 500:513–529, 2007. © 2006 Wiley‐Liss, Inc.

[1]  T. Milner,et al.  Ultrastructural localization of somatostatin‐like immunoreactivity in the rat dentate gyrus , 1989, The Journal of comparative neurology.

[2]  A. McDonald Projection neurons of the basolateral amygdala: A correlative Golgi and retrograde tract tracing study , 1992, Brain Research Bulletin.

[3]  K. Uchizono Characteristics of Excitatory and Inhibitory Synapses in the Central Nervous System of the Cat , 1965, Nature.

[4]  Joseph E LeDoux,et al.  Projections from the lateral nucleus to the basal nucleus of the amygdala: A light and electron microscopic PHA‐L study in the rat , 1992, The Journal of comparative neurology.

[5]  L. Raiteri,et al.  Somatostatin inhibits glutamate release from mouse cerebrocortical nerve endings through presynaptic sst2 receptors linked to the adenylyl cyclase–protein kinase A pathway , 2004, Neuropharmacology.

[6]  J. Bellanger,et al.  Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition , 2002, The European journal of neuroscience.

[7]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[8]  D. Paré,et al.  Differential innervation of parvalbumin‐immunoreactive interneurons of the basolateral amygdaloid complex by cortical and intrinsic inputs , 2000, The Journal of comparative neurology.

[9]  Tony Wu,et al.  Vasoactive intestinal polypeptide enhances the GABAergic synaptic transmission in cultured hippocampal neurons , 1997, Brain Research.

[10]  R. S. Sloviter,et al.  Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. , 1987, Science.

[11]  F. Mascagni,et al.  Synaptology of prefrontal cortical projections to the basolateral amygdala: an electron microscopic study in the rat , 1995, Neuroscience Letters.

[12]  L. Acsády,et al.  Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus , 1996, Neuroscience.

[13]  B. Bean,et al.  Neurotransmitter Activation of Inwardly Rectifying Potassium Current in Dissociated Hippocampal CA3 Neurons: Interactions among Multiple Receptors , 1998, The Journal of Neuroscience.

[14]  M. Baratta,et al.  Somatostatin depresses long-term potentiation and Ca2+ signaling in mouse dentate gyrus. , 2002, Journal of neurophysiology.

[15]  Alex M Thomson,et al.  Physiological and morphological diversity of immunocytochemically defined parvalbumin‐ and cholecystokinin‐positive interneurones in CA1 of the adult rat hippocampus , 2002, The Journal of comparative neurology.

[16]  A. McDonald Morphology of peptide-containing neurons in the rat basolateral amygdaloid nucleus , 1985, Brain Research.

[17]  S. Totterdell,et al.  Neurons in the ventral subiculum, amygdala and entorhinal cortex which project to the nucleus accumbens: Their input from somatostatin-immunoreactive boutons , 1993, Journal of Chemical Neuroanatomy.

[18]  Y. Ben-Ari,et al.  Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy , 2001, Nature Neuroscience.

[19]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[20]  W. Feniuk,et al.  Outward current produced by somatostatin (SRIF) in rat anterior cingulate pyramidal cells in vitro , 1998, British journal of pharmacology.

[21]  F. Mascagni,et al.  Coupled Networks of Parvalbumin-Immunoreactive Interneurons in the Rat Basolateral Amygdala , 2005, The Journal of Neuroscience.

[22]  P. Gloor,et al.  Role of the amygdala in temporal lobe epilepsy. , 1992 .

[23]  Hans-Christian Pape,et al.  Amygdalar and Hippocampal Theta Rhythm Synchronization During Fear Memory Retrieval , 2003, Science.

[24]  H. Dodt,et al.  Actions of vasoactive intestinal polypeptide (VIP) on neocortical neurons of the rat in vitro , 1992, Neuroscience Letters.

[25]  M. Carpenter The Fine Structure of the Nervous System , 1970, Neurology.

[26]  F. Mascagni,et al.  Immunohistochemical characterization of cholecystokinin containing neurons in the rat basolateral amygdala , 2003, Brain Research.

[27]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[28]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[29]  C. Saper,et al.  Differential expression of somatostatin receptor subtypes in brain , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  W. Drevets Neuroimaging Abnormalities in the Amygdala in Mood Disorders , 2003, Annals of the New York Academy of Sciences.

[31]  A. McDonald,et al.  Parvalbumin-containing neurons in the rat basolateral amygdala: morphology and co-localization of Calbindin-D 28k , 2001, Neuroscience.

[32]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[33]  Y. Kawaguchi,et al.  Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex , 2002, Journal of neurocytology.

[34]  G. Telegdy,et al.  Effects of somatostatin and anti-somatostatin serum on picrotoxin-kindled seizures , 1992, Neuropharmacology.

[35]  J. Morrison,et al.  Ultrastructural analysis of somatostatin‐immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[36]  E. Asprodini,et al.  Intracellular recordings from morphologically identified neurons of the basolateral amygdala. , 1993, Journal of neurophysiology.

[37]  Dawn R. Collins,et al.  Amygdala oscillations and the consolidation of emotional memories , 2002, Trends in Cognitive Sciences.

[38]  T. Halonen,et al.  Decrease in somatostatin-immunoreactive neurons in the rat amygdaloid complex in a kindling model of temporal lobe epilepsy , 1997, Epilepsy Research.

[39]  M B Hancock,et al.  Two-color immunoperoxidase staining: visualization of anatomic relationships between immunoreactive neural elements. , 1986, The American journal of anatomy.

[40]  M. Simonato,et al.  On the Role of Somatostatin in Seizure Control: Clues from the Hippocampus , 2003, Reviews in the neurosciences.

[41]  F. Mascagni,et al.  GABAergic innervation of alpha type II calcium/calmodulin‐dependent protein kinase immunoreactive pyramidal neurons in the rat basolateral amygdala , 2002, The Journal of comparative neurology.

[42]  A. Thomson,et al.  Facilitating pyramid to horizontal oriens‐alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus , 1998, The Journal of physiology.

[43]  F. Mascagni,et al.  Pyramidal cells of the rat basolateral amygdala: Synaptology and innervation by parvalbumin‐immunoreactive interneurons , 2006, The Journal of comparative neurology.

[44]  John Patrick Aggleton,et al.  The Amygdala : a functional analysis , 2000 .

[45]  J. H. Kim,et al.  Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy , 1989, Brain Research.

[46]  P. Magistretti,et al.  VIP and PACAP potentiate the action of glutamate on BDNF expression in mouse cortical neurones , 1998, The European journal of neuroscience.

[47]  Elizabeth Hall The amygdala of the cat: A golgi study , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[48]  Z. Csaba,et al.  Cellular biology of somatostatin receptors , 2001, Neuropeptides.

[49]  J. Brown,et al.  An immunocytochemical investigation with monoclonal antibodies to somatostatin , 2004, Histochemistry.

[50]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[51]  A. Beaudet,et al.  Localization of the Somatostatin Receptor SST2A in Rat Brain Using a Specific Anti-Peptide Antibody , 1996, The Journal of Neuroscience.

[52]  J. Storm,et al.  Protein kinase A mediates the modulation of the slow Ca(2+)-dependent K(+) current, I(sAHP), by the neuropeptides CRF, VIP, and CGRP in hippocampal pyramidal neurons. , 2000, Journal of neurophysiology.

[53]  Floris G Wouterlood,et al.  Use of peroxidase substrate Vector VIP® for multiple staining in light microscopy , 1997, Journal of Neuroscience Methods.

[54]  Lisa M Shin,et al.  Neuroimaging Studies of Amygdala Function in Anxiety Disorders , 2003, Annals of the New York Academy of Sciences.

[55]  L. Acsády,et al.  Target Selectivity and Neurochemical Characteristics of VIP‐immunoreactive Interneurons in the Rat Dentate Gyrus , 1996, The European journal of neuroscience.

[56]  F. Mascagni,et al.  Synaptic connections of distinct interneuronal subpopulations in the rat basolateral amygdalar nucleus , 2003, The Journal of comparative neurology.

[57]  Joseph E LeDoux,et al.  Ultrastructure and synaptic associations of auditory thalamo-amygdala projections in the rat , 2004, Experimental Brain Research.

[58]  B. Hille,et al.  Modulation of High Voltage-Activated Calcium Channels by Somatostatin in Acutely Isolated Rat Amygdaloid Neurons , 1996, The Journal of Neuroscience.

[59]  M. Kennedy,et al.  Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  N. Tamamaki,et al.  Hippocampal pyramidal cells excite inhibitory neurons through a single release site , 1993, Nature.

[61]  Lennart Heimer,et al.  The basolateral amygdaloid complex as a cortical-like structure , 1988, Brain Research.

[62]  J. Pearson,et al.  Coexistence of GABA and peptide immunoreactivity in non-pyramidal neurons of the basolateral amygdala , 1989, Neuroscience Letters.

[63]  Sébastien Royer,et al.  Contextual Inhibitory Gating of Impulse Traffic in the Intra‐amygdaloid Network , 2003, Annals of the New York Academy of Sciences.

[64]  T. Halonen,et al.  Status Epilepticus Causes Selective Regional Damage and Loss of GABAergic Neurons in the Rat Amygdaloid Complex , 1996, The European journal of neuroscience.

[65]  J. Ribeiro,et al.  VIP enhances synaptic transmission to hippocampal CA1 pyramidal cells through activation of both VPAC1 and VPAC2 receptors , 2005, Brain Research.

[66]  Julio Cesar Sampaio P. Leite,et al.  Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentata , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  M. Whittington,et al.  A Novel Network of Multipolar Bursting Interneurons Generates Theta Frequency Oscillations in Neocortex , 2003, Neuron.

[68]  Floris G Wouterlood,et al.  Neuroanatomical tracing at high resolution , 2000, Journal of Neuroscience Methods.

[69]  G. Siggins,et al.  Somatostatin depresses excitatory but not inhibitory neurotransmission in rat CA1 hippocampus. , 1997, Journal of neurophysiology.

[70]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[71]  D. Hoyer,et al.  Brain somatostatin: a candidate inhibitory role in seizures and epileptogenesis , 1999, The European journal of neuroscience.

[72]  P. Somogyi,et al.  Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo , 2004, Nature Neuroscience.

[73]  S. Cavallaro,et al.  Opposing effects by pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide on hippocampal synaptic transmission , 2003, Experimental Neurology.

[74]  M. Witter,et al.  Projection from the nucleus reuniens thalami to the hippocampal region: Light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris‐leucoagglutinin , 1990, The Journal of comparative neurology.

[75]  G. Juhász,et al.  GABAB receptor antagonist CGP-36742 enhances somatostatin release in the rat hippocampus in vivo and in vitro , 2003 .

[76]  C. Aoki,et al.  Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding , 1990, Journal of Neuroscience Methods.

[77]  P. Emson,et al.  Morphology, distribution, and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[79]  D. Paré,et al.  Intra-amygdaloid projections of the basolateral and basomedial nuclei in the cat: Phaseolus vulgaris-leucoagglutinin anterograde tracing at the light and electron microscopic level , 1995, Neuroscience.

[80]  M. Washburn,et al.  Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  F. Mascagni,et al.  Immunocytochemical localization of GABABR1 receptor subunits in the basolateral amygdala , 2004, Brain Research.

[82]  Menno P. Witter,et al.  Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry , 2002, Science.

[83]  V. Tennyson The Fine Structure of the Nervous System. , 1970 .

[84]  F. Morrell,et al.  Cholinergic Synapses in Human Cerebral Cortex: An Ultrastructural Study in Serial Sections , 1997, Experimental Neurology.

[85]  D. Paré,et al.  Neuronal Correlates of Fear in the Lateral Amygdala: Multiple Extracellular Recordings in Conscious Cats , 2000, The Journal of Neuroscience.

[86]  A. McDonald Coexistence of somatostatin with neuropeptide Y, but not with cholecystokinin or vasoactive intestinal peptide, in neurons of the rat amygdala , 1989, Brain Research.

[87]  J. Reubi,et al.  Somatostatin Receptors , 1997, Trends in Endocrinology & Metabolism.

[88]  T. Freund,et al.  Synaptic Input of Horizontal Interneurons in Stratum Oriens of the Hippocampal CA1 Subfield: Structural Basis of Feed‐back Activation , 1995, The European journal of neuroscience.

[89]  A. Pitkänen,et al.  Distribution of parvalbumin, calretinin, and calbindin‐D28k immunoreactivity in the rat amygdaloid complex and colocalization with γ‐aminobutyric acid , 2000, The Journal of comparative neurology.

[90]  Peter Somogyi,et al.  Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro , 2000, The Journal of physiology.

[91]  H. Pape,et al.  Mechanisms of somatostatin‐evoked responses in neurons of the rat lateral amygdala , 2005, The European journal of neuroscience.

[92]  D. Paré,et al.  Intra‐amygdaloid projections of the lateral nucleus in the cat: PHA‐L anterograde labeling combined with postembedding GABA and glutamate immunocytochemistry , 1994, The Journal of comparative neurology.

[93]  F. Mascagni,et al.  Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala , 2001, Neuroscience.

[94]  H. Betz,et al.  Somatostatin Inhibits Excitatory Transmission at Rat Hippocampal Synapses via Presynaptic Receptors , 1997, The Journal of Neuroscience.

[95]  Joseph E LeDoux,et al.  Afferents from rat temporal cortex synapse on lateral amygdala neurons that express NMDA and AMPA receptors , 1999, Synapse.

[96]  L. Acsády,et al.  Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus , 1999, Neuroscience.

[97]  C. McBain,et al.  Passive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region , 1995, Neuron.

[98]  P. Buckmaster,et al.  Axon arbors and synaptic connections of a vulnerable population of interneurons in the dentate gyrus in vivo , 2002, The Journal of comparative neurology.

[99]  H. T. Blair,et al.  Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. , 2001, Learning & memory.

[100]  F. Mascagni,et al.  Immunohistochemical characterization of somatostatin containing interneurons in the rat basolateral amygdala , 2002, Brain Research.