Classification of pulsars with Dirichlet process Gaussian mixture model

Young isolated neutron stars (INS) most commonly manifest themselves as rotationally powered pulsars (RPPs) which involve conventional radio pulsars as well as gamma-ray pulsars (GRPs) and rotating radio transients (RRATs). Some other young INS families manifest themselves as anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) which are commonly accepted as magnetars, i.e. magnetically powered neutron stars with decaying superstrong fields. Yet some other young INS are identified as central compact objects (CCOs) and X-ray dim isolated neutron stars (XDINSs) which are cooling objects powered by their thermal energy. Older pulsars, as a result of a previous long episode of accretion from a companion, manifest themselves as millisecond pulsars and more commonly appear in binary systems. We use Dirichlet process Gaussian mixture model (DPGMM), an unsupervised machine learning algorithm, for analyzing the distribution of these pulsar families in the parameter space of period and period derivative. We compare the average values of the characteristic age, magnetic dipole field strength, surface temperature and transverse velocity of all discovered clusters. We verify that DPGMM is robust and provides hints for inferring relations between different classes of pulsars. We discuss the implications of our findings for the magneto-thermal spin evolution models and fallback discs.

[1]  K. Postnov,et al.  Theory of quasi-spherical accretion in X-ray pulsars , 2011, 1110.3701.

[2]  R. Manchester,et al.  XMM-NEWTON OBSERVATION OF THE VERY OLD PULSAR J0108−1431 , 2012, 1210.7179.

[3]  Sandro Mereghetti,et al.  The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars , 2008 .

[4]  T. Tauris,et al.  Formation and evolution of compact stellar X-ray sources , 2003 .

[5]  V. Kaspi,et al.  THE McGILL MAGNETAR CATALOG , 2013, 1309.4167.

[6]  R. Manchester,et al.  The ATNF Pulsar Catalogue , 2003, astro-ph/0309219.

[7]  S. Mereghetti X-ray emission from isolated neutron stars , 2010, 1008.2891.

[8]  R. Xu,et al.  AXPs and SGRs in the outer gap model: confronting Fermi observations , 2011, 1101.2289.

[9]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[10]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[11]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[12]  F. Camilo,et al.  Unusual Pulsed X-Ray Emission from the Young, High Magnetic Field Pulsar PSR J1119–6127 , 2005, astro-ph/0505332.

[13]  K. Ekşi,et al.  ON THE EVOLUTION OF ANOMALOUS X-RAY PULSARS AND SOFT GAMMA-RAY REPEATERS WITH FALL BACK DISKS , 2009, 0907.3222.

[14]  P. B. Cameron,et al.  PROPER MOTIONS AND ORIGINS OF SGR 1806−20 AND SGR 1900+14 , 2012, 1210.8151.

[15]  E. Goğuş,et al.  Search for High-energy Gamma-ray Emission from an Anomalous X-ray Pulsar, 4U 0142+61 , 2010, 1009.1279.

[16]  K. Borkowski,et al.  Expansion of Kes 73, A Shell Supernova Remnant Containing a Magnetar , 2014, 1708.01626.

[17]  M. Bachetti,et al.  MAGNETAR-LIKE ACTIVITY FROM THE CENTRAL COMPACT OBJECT IN THE SNR RCW103 , 2016, 1607.04107.

[18]  F. Özel Surface emission from neutron stars and implications for the physics of their interiors , 2012 .

[19]  H. Akaike A new look at the statistical model identification , 1974 .

[20]  D. Torres A ROTATIONALLY POWERED MAGNETAR NEBULA AROUND SWIFT J1834.9–0846 , 2016, 1612.02835.

[21]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[22]  Chandra X-ray Detection of the High-Magnetic-Field Radio Pulsar PSR J1718-3718 , 2004, astro-ph/0411615.

[23]  D. Bhattacharya,et al.  Formation and evolution of binary and millisecond radio pulsars , 1991 .

[24]  Electronic Engineering,et al.  Pulse frequency fluctuations of magnetars , 2018, Monthly Notices of the Royal Astronomical Society.

[25]  P. Esposito,et al.  LOW-MAGNETIC-FIELD MAGNETARS , 2013, 1303.6052.

[26]  Tao Xiang,et al.  Background Subtraction with DirichletProcess Mixture Models , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  F. Camilo,et al.  1E 1547.0–5408: A Radio-emitting Magnetar with a Rotation Period of 2 Seconds , 2007, 0708.0002.

[28]  W. Ho Evolution of a buried magnetic field in the central compact object neutron stars , 2011, 1102.4870.

[29]  D. Thompson,et al.  A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope , 2009, Science.

[30]  K. Ekşi,et al.  Relating the kick velocities of young pulsars with magnetic field growth time-scales inferred from braking indices. , 2013 .

[31]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[32]  R. Xu,et al.  ANOMALOUS X-RAY PULSARS AND SOFT GAMMA-RAY REPEATERS IN THE OUTER GAP MODEL: CONFRONTING FERMI OBSERVATIONS , 2011 .

[33]  D. Page,et al.  Delayed switch-on of pulsars , 1995 .

[34]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2005 .

[35]  Andrew Cumming,et al.  40 Years of Pulsars : Millisecond Pulsars, Magnetars and More , 2008 .

[36]  U. Florida,et al.  X-RAY OBSERVATIONS OF THE YOUNG PULSAR J1357—6429 AND ITS PULSAR WIND NEBULA , 2011, 1107.1819.

[37]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[38]  R. Chevalier Neutron Star Accretion in a Supernova , 1989 .

[39]  F. Özel,et al.  On the cooling trend of SGR 0526−66 , 2012 .

[40]  F. Camilo,et al.  PSR J1119–6127 and the X-ray emission from high magnetic field radio pulsars , 2006, astro-ph/0610522.

[41]  L. Singer,et al.  Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations , 2018, Monthly Notices of the Royal Astronomical Society.

[42]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[43]  A. Schwope,et al.  The compactness of the isolated neutron star RX J0720.4−3125 , 2017, 1702.07635.

[44]  Kevin C. Hurley,et al.  Soft gamma repeaters , 2011 .

[45]  C. Thompson,et al.  Neutron star dynamos and the origins of pulsar magnetism , 1993 .

[46]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[47]  E. Gotthelf,et al.  ON THE SPIN-DOWN AND MAGNETIC FIELD OF THE X-RAY PULSAR 1E 1207.4−5209 , 2011 .

[48]  Sandro Mereghetti,et al.  Magnetars: Properties, Origin and Evolution , 2015, Space Science Reviews.

[49]  V. Kaspi Grand unification of neutron stars , 2010, Proceedings of the National Academy of Sciences.

[50]  V. Kaspi,et al.  An XMM-Newton Observation of the High Magnetic Field Radio Pulsar PSR B0154+61 , 2004 .

[51]  V. Kaspi,et al.  Magnetar-like X-ray bursts from an anomalous X-ray pulsar , 2002, Nature.

[52]  C. Kouveliotou,et al.  A Low-Magnetic-Field Soft Gamma Repeater , 2010, Science.

[53]  F. Haberl The magnificent seven: magnetic fields and surface temperature distributions , 2006 .

[54]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[55]  A. Hewish,et al.  Observation of a Rapidly Pulsating Radio Source , 1968, Nature.

[56]  N. Rea,et al.  DISCOVERY OF A STRONGLY PHASE-VARIABLE SPECTRAL FEATURE IN THE ISOLATED NEUTRON STAR RX J0720.4–3125 , 2015, 1506.04206.

[57]  R. Perna,et al.  Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. , 2013, 1306.2156.

[58]  R. Neuhaeuser,et al.  The origin of RX J1856.5−3754 and RX J0720.4−3125 – updated using new parallax measurements , 2011, 1107.1673.

[59]  France,et al.  LOFAR Discovery of a 23.5 s Radio Pulsar , 2018, The Astrophysical Journal.

[60]  M. A. Alpar On Young Neutron Stars as Propellers and Accretors with Conventional Magnetic Fields , 2000 .

[61]  S. Popov,et al.  Post fall-back evolution of multipolar magnetic fields and radio pulsar activation , 2016, 1608.08806.

[62]  J. Font,et al.  Are pulsars born with a hidden magnetic field , 2015, 1511.03823.

[63]  H. Raiffa,et al.  Applied Statistical Decision Theory. , 1961 .

[64]  C. Thompson,et al.  Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates , 2004 .

[65]  Can Thin Disks Produce Anomalous X-Ray Pulsars? , 2003, astro-ph/0308455.

[66]  M. Mclaughlin,et al.  Further searches for Rotating Radio Transients in the Parkes Multi-beam Pulsar Survey , 2009, 0909.1924.

[67]  K. Ekşi On the new braking index of PSR B0540-69: further support for magnetic field growth of neutron stars following submergence by fallback accretion , 2017 .

[68]  R. Neuhaeuser,et al.  Neutron Stars From Young Nearby Associations: The Origin of RX J1605.3+3249 , 2012, Publications of the Astronomical Society of Australia.

[69]  Robert P. Johnson,et al.  THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS , 2013 .

[70]  A. Luca,et al.  Neutron Stars—Thermal Emitters , 2014, 1409.7666.

[71]  A. Harding,et al.  Magnetar Spin-Down , 1999, The Astrophysical journal.

[72]  Utrecht,et al.  Supernova remnant energetics and magnetars: no evidence in favour of millisecond proto-neutron stars , 2006, astro-ph/0604187.

[73]  M. Alpar,et al.  SGR 0418+5729—HOW DOES A YOUNG NEUTRON STAR SPIN DOWN TO A 9 s PERIOD WITH A DIPOLE FIELD LESS THAN 1013 G? , 2011, 1102.1336.

[74]  E. Gotthelf,et al.  THE SPIN-DOWN OF PSR J0821–4300 AND PSR J1210–5226: CONFIRMATION OF CENTRAL COMPACT OBJECTS AS ANTI-MAGNETARS , 2013, 1301.2717.

[75]  D. Thompson,et al.  SEARCH FOR GAMMA-RAY EMISSION FROM MAGNETARS WITH THE FERMI LARGE AREA TELESCOPE , 2010 .

[76]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[77]  P. B. Cameron,et al.  PROPER MOTIONS AND ORIGINS OF AXP 1E 2259+586 AND AXP 4U 0142+61 , 2013 .

[78]  R. Perna,et al.  The Outburst Decay of the Low Magnetic Field Magnetar SWIFT J1822.3-1606: Phase-resolved Analysis and Evidence for a Variable Cyclotron Feature , 2015, 1510.09157.

[79]  E. Gotthelf,et al.  Precise Timing of the X-ray Pulsar 1E 1207.4–5209: A Steady Neutron Star Weakly Magnetized at Birth , 2007, 0704.2255.

[80]  C. Kouveliotou,et al.  Physical mechanisms for the variable spin-down and light curve of SGR 1900+14 , 1999, astro-ph/9908086.

[81]  A. Deller,et al.  THE PROPER MOTION OF PSR J1550–5418 MEASURED WITH VLBI: A SECOND MAGNETAR VELOCITY MEASUREMENT , 2012, 1201.4684.

[82]  G. Bignami,et al.  X-RAY PULSATIONS FROM THE RADIO-QUIET GAMMA-RAY PULSAR IN CTA 1 , 2010, 1010.4167.

[83]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[84]  D. Massart,et al.  The Mahalanobis distance , 2000 .

[85]  A. Harding The neutron star zoo , 2013, Frontiers of Physics.

[86]  E. Gotthelf,et al.  SPIN-DOWN MEASUREMENT OF PSR J1852+0040 IN KESTEVEN 79: CENTRAL COMPACT OBJECTS AS ANTI-MAGNETARS , 2009, 0911.0093.

[87]  S. Johnston,et al.  Chandra Phase-resolved Spectroscopy of the High Magnetic Field Pulsar B1509−58 , 2016, 1704.00460.

[88]  F. Camilo,et al.  X-ray observations of the high magnetic field radio pulsar psr j1814-1744 , 2000, astro-ph/0001091.

[89]  A. Spitkovsky Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators , 2006, astro-ph/0603147.

[90]  A. J. van der Horst,et al.  MAGNETAR-LIKE X-RAY BURSTS FROM A ROTATION-POWERED PULSAR, PSR J1119–6127 , 2016, 1608.07133.

[91]  Modelling of isolated radio pulsars and magnetars on the fossil field hypothesis , 2006, astro-ph/0601258.

[92]  S. Kulkarni,et al.  A millisecond pulsar , 1982, Nature.

[93]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[94]  The First Fermi Large Area Telescope Catalog of Gamma-ray Pulsars , 2010 .

[95]  Bonn,et al.  PSR J1840−1419: A VERY COOL NEUTRON STAR , 2013, 1301.2814.

[96]  Wolfram H. P. Pernice,et al.  Waveguide integrated superconducting single-photon detector for on-chip quantum and spectral photonic application , 2017 .

[97]  N. Rea,et al.  Comparing supernova remnants around strongly magnetized and canonical pulsars , 2014, 1409.1027.

[98]  B. Paczyński GB 790305 as a very strongly magnetized neutron star , 1992 .

[99]  K. Hayashida,et al.  Unification of strongly magnetized neutron stars with regard to X‐ray emission from hot spots , 2019, Astronomische Nachrichten.

[100]  K. Hurley,et al.  An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806 − 20 , 1998, Nature.

[101]  G. Chanmugam,et al.  Postaccretion magnetic field evolution of neutron stars , 1995 .

[102]  Christopher Thompson,et al.  The Soft Gamma Repeaters as Very Strongly Magnetized Neutron Stars. II. Quiescent Neutrino, X-Ray, and Alfvén Wave Emission , 1996 .

[103]  D. Kaplan,et al.  A debris disk around an isolated young neutron star , 2006, Nature.

[104]  A. Cheng,et al.  A new class of radio pulsars , 1982, Nature.

[105]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[106]  S. Popov,et al.  Gaussian mixture models and the population synthesis of radio pulsars , 2013, 1306.5589.

[107]  V. Kaspi,et al.  A MAGNETAR-LIKE OUTBURST FROM A HIGH-B RADIO PULSAR , 2016, 1608.01007.

[108]  M. Alpar,et al.  On the Enhanced X-Ray Emission from SGR 1900+14 after the August 27 Giant Flare , 2003, astro-ph/0307344.

[109]  R. N. Manchester,et al.  Transient radio bursts from rotating neutron stars , 2005, Nature.

[110]  D. Viganò,et al.  Central compact objects and the hidden magnetic field scenario , 2012 .

[111]  S. Burke-Spolaor,et al.  A RADIO-LOUD MAGNETAR IN X-RAY QUIESCENCE , 2010, 1007.1052.

[112]  A. Watts,et al.  Magnetars: the physics behind observations. A review , 2015, Reports on progress in physics. Physical Society.

[113]  P. Esposito,et al.  Strongly magnetized pulsars: explosive events and evolution , 2018, 1805.01680.

[114]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[115]  V. Kaspi,et al.  Magnetar-Like Emission from the Young Pulsar in Kes 75 , 2008, Science.

[116]  N. Rea Magnetars: The strongest magnets in the Universe , 2014 .

[117]  D. Champion,et al.  Application of the Gaussian mixture model in pulsar astronomy – pulsar classification and candidates ranking for the Fermi 2FGL catalogue , 2012, 1205.6221.

[118]  C. Thompson,et al.  The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts , 1995 .

[119]  R. Neuhaeuser,et al.  Identifying birth places of young isolated neutron stars , 2009, 0911.4441.

[120]  D. Lai,et al.  THE HIDDEN MAGNETIC FIELD OF THE YOUNG NEUTRON STAR IN KESTEVEN 79 , 2011, 1110.3129.

[121]  William H. Lee,et al.  HYPERCRITICAL ACCRETION ONTO A NEWBORN NEUTRON STAR AND MAGNETIC FIELD SUBMERGENCE , 2012, 1212.0464.

[122]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[123]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[124]  XMM-Newton spectral and timing observations of the millisecond pulsar PSR J0218+4232 , 2003, astro-ph/0312609.

[125]  D. Helfand,et al.  VLBA Measurement of the Transverse Velocity of the Magnetar XTE J1810–197 , 2007, astro-ph/0703336.

[126]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[127]  C. Kouveliotou,et al.  Physical Mechanisms for the Variable Spin-down of Sgr 1900 + 14 , 2008 .

[128]  P. Caraveo,et al.  A MULTIWAVELENGTH STUDY ON THE HIGH-ENERGY BEHAVIOR OF THE FERMI/LAT PULSARS , 2011, 1103.0572.

[129]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[130]  M. Mclaughlin,et al.  PSR J1847–0130: A Radio Pulsar with Magnetar Spin Characteristics , 2003, astro-ph/0306065.

[131]  L. Zhang,et al.  High-Energy Gamma-Ray Emission from Anomalous X-Ray Pulsars , 2001 .

[132]  Min-Su Shin,et al.  Detecting Variability in Massive Astronomical Time-Series Data I: application of an infinite Gaussian mixture model , 2009, 0908.2664.

[133]  L. Hernquist,et al.  An Accretion Model for Anomalous X-Ray Pulsars , 1999, astro-ph/9912137.

[134]  D. Helfand,et al.  Transient pulsed radio emission from a magnetar , 2006, Nature.

[135]  A. Tiengo,et al.  Narrow phase-dependent features in X-ray dim isolated neutron stars : a new detection and upper limits , 2017, 1703.05336.